系列文章传送门:

Java多线程学习(一)Java多线程入门

Java多线程学习(二)synchronized关键字(1)

java多线程学习(二)synchronized关键字(2)

Java多线程学习(三)volatile关键字

Java多线程学习(四)等待/通知(wait/notify)机制

Java多线程学习(五)线程间通信知识点补充

Java多线程学习(六)Lock锁的使用

Java多线程学习(七)并发编程中一些问题

系列文章将被优先更新于微信公众号<font color="red">“Java面试通关手册”</font>,欢迎广大Java程序员和爱好技术的人员关注。

(2) synchronized同步语句块

本节思维导图:
思维导图

思维导图源文件+思维导图软件关注微信公众号:“Java面试通关手册”回复关键字:“Java多线程”免费领取。

一 synchronized方法的缺点

使用<font color="red">synchronized关键字</font>声明方法有些时候是有很大的弊端的,比如我们有两个线程一个线程A调用同步方法后获得锁,那么另一个线程B就需要等待A执行完,但是如果说A执行的是一个很费时间的任务的话这样就会很耗时。

先来看一个<font color="red">暴露synchronized方法的缺点实例</font>,然后在看看如何通过synchronized同步语句块解决这个问题。

<font size="2">Task.java</font>

public class Task {

    private String getData1;
    private String getData2;

    public synchronized void doLongTimeTask() {
        try {
            System.out.println("begin task");
            Thread.sleep(3000);
            getData1 = "长时间处理任务后从远程返回的值1 threadName="
                    + Thread.currentThread().getName();
            getData2 = "长时间处理任务后从远程返回的值2 threadName="
                    + Thread.currentThread().getName();
            System.out.println(getData1);
            System.out.println(getData2);
            System.out.println("end task");
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
}

<font size="2">CommonUtils.java</font>

public class CommonUtils {

    public static long beginTime1;
    public static long endTime1;

    public static long beginTime2;
    public static long endTime2;
}

<font size="2">MyThread1.java</font>

public class MyThread1 extends Thread {
    private Task task;
    public MyThread1(Task task) {
        super();
        this.task = task;
    }
    @Override
    public void run() {
        super.run();
        CommonUtils.beginTime1 = System.currentTimeMillis();
        task.doLongTimeTask();
        CommonUtils.endTime1 = System.currentTimeMillis();
    }
}

<font size="2">MyThread2.java</font>

public class MyThread2 extends Thread {
    private Task task;
    public MyThread2(Task task) {
        super();
        this.task = task;
    }
    @Override
    public void run() {
        super.run();
        CommonUtils.beginTime2 = System.currentTimeMillis();
        task.doLongTimeTask();
        CommonUtils.endTime2 = System.currentTimeMillis();
    }
}

<font size="2">Run.java</font>

public class Run {

    public static void main(String[] args) {
        Task task = new Task();

        MyThread1 thread1 = new MyThread1(task);
        thread1.start();

        MyThread2 thread2 = new MyThread2(task);
        thread2.start();

        try {
            Thread.sleep(10000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        long beginTime = CommonUtils.beginTime1;
        if (CommonUtils.beginTime2 < CommonUtils.beginTime1) {
            beginTime = CommonUtils.beginTime2;
        }

        long endTime = CommonUtils.endTime1;
        if (CommonUtils.endTime2 > CommonUtils.endTime1) {
            endTime = CommonUtils.endTime2;
        }

        System.out.println("耗时:" + ((endTime - beginTime) / 1000));
    }
}

<font size="2">运行结果:</font>
运行结果
从运行时间上来看,synchronized方法的问题很明显。可以<font color="red">使用synchronized同步块来解决这个问题</font>。但是要注意synchronized同步块的使用方式,如果synchronized同步块使用不好的话并不会带来效率的提升。

二 synchronized(this)同步代码块的使用

修改上例中的Task.java如下:

public class Task {

    private String getData1;
    private String getData2;

    public void doLongTimeTask() {
        try {
            System.out.println("begin task");
            Thread.sleep(3000);

            String privateGetData1 = "长时间处理任务后从远程返回的值1 threadName="
                    + Thread.currentThread().getName();
            String privateGetData2 = "长时间处理任务后从远程返回的值2 threadName="
                    + Thread.currentThread().getName();

            synchronized (this) {
                getData1 = privateGetData1;
                getData2 = privateGetData2;
            }
            
            System.out.println(getData1);
            System.out.println(getData2);
            System.out.println("end task");
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
    }
}

<font size="2">运行结果:</font>
运行结果
从上面代码可以看出<font color="red">当一个线程访问一个对象的synchronized同步代码块时,另一个线程任然可以访问该对象非synchronized同步代码块</font>。

时间虽然缩短了,但是大家考虑一下synchronized代码块真的是同步的吗?它真的持有当前调用对象的锁吗?

<font color="red">是的。不在synchronized代码块中就异步执行,在synchronized代码块中就是同步执行。</font>

验证代码:synchronizedDemo1包下

三 synchronized(object)代码块间使用

<font size="2">MyObject.java</font>

public class MyObject {
}

<font size="2">Service.java</font>

public class Service {

    public void testMethod1(MyObject object) {
        synchronized (object) {
            try {
                System.out.println("testMethod1 ____getLock time="
                        + System.currentTimeMillis() + " run ThreadName="
                        + Thread.currentThread().getName());
                Thread.sleep(2000);
                System.out.println("testMethod1 releaseLock time="
                        + System.currentTimeMillis() + " run ThreadName="
                        + Thread.currentThread().getName());
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

<font size="2">ThreadA.java</font>

public class ThreadA extends Thread {

    private Service service;
    private MyObject object;

    public ThreadA(Service service, MyObject object) {
        super();
        this.service = service;
        this.object = object;
    }

    @Override
    public void run() {
        super.run();
        service.testMethod1(object);
    }
}

<font size="2">ThreadB.java</font>

public class ThreadB extends Thread {
    private Service service;
    private MyObject object;

    public ThreadB(Service service, MyObject object) {
        super();
        this.service = service;
        this.object = object;
    }

    @Override
    public void run() {
        super.run();
        service.testMethod1(object);
    }

}

<font size="2"> Run1_1.java</font>

public class Run1_1 {

    public static void main(String[] args) {
        Service service = new Service();
        MyObject object = new MyObject();

        ThreadA a = new ThreadA(service, object);
        a.setName("a");
        a.start();

        ThreadB b = new ThreadB(service, object);
        b.setName("b");
        b.start();
    }
}

<font size="2">运行结果:</font>
运行结果
可以看出如下图所示,<font color="red">两个线程使用了同一个“对象监视器”,所以运行结果是同步的。</font>
同一个对象监视器
<font color="red">那么,如果使用不同的对象监视器会出现什么效果呢?</font>

修改Run1_1.java如下:

public class Run1_2 {

    public static void main(String[] args) {
        Service service = new Service();
        MyObject object1 = new MyObject();
        MyObject object2 = new MyObject();

        ThreadA a = new ThreadA(service, object1);
        a.setName("a");
        a.start();

        ThreadB b = new ThreadB(service, object2);
        b.setName("b");
        b.start();
    }
}

<font size="2">运行结果:</font>
运行结果:
可以看出如下图所示,<font color="red">两个线程使用了不同的“对象监视器”,所以运行结果不是同步的了。</font>
不同的对象监视器

四 synchronized代码块间的同步性

当一个对象访问synchronized(this)代码块时,其他线程对同一个对象中所有其他synchronized(this)代码块代码块的访问将被阻塞,这说明<font color="red">synchronized(this)代码块使用的“对象监视器”是一个。</font>
也就是说<font color="red">和synchronized方法一样,synchronized(this)代码块也是锁定当前对象的。</font>

另外通过上面的学习我们可以得出<font color="red">两个结论</font>。

  1. <font color="red">其他线程执行对象中synchronized同步方法(上一节我们介绍过,需要回顾的可以看上一节的文章)和synchronized(this)代码块时呈现同步效果;</font>
  2. <font color="red">如果两个线程使用了同一个“对象监视器”,运行结果同步,否则不同步.</font>

五 静态同步synchronized方法与synchronized(class)代码块

<font color="red">synchronized关键字加到static静态方法和synchronized(class)代码块上都是是给Class类上锁,而synchronized关键字加到非static静态方法上是给对象上锁。</font>

<font size="2">Service.java</font>

package ceshi;

public class Service {

    public static void printA() {
        synchronized (Service.class) {
            try {
                System.out.println(
                        "线程名称为:" + Thread.currentThread().getName() + "在" + System.currentTimeMillis() + "进入printA");
                Thread.sleep(3000);
                System.out.println(
                        "线程名称为:" + Thread.currentThread().getName() + "在" + System.currentTimeMillis() + "离开printA");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }

    synchronized public static void printB() {
        System.out.println("线程名称为:" + Thread.currentThread().getName() + "在" + System.currentTimeMillis() + "进入printB");
        System.out.println("线程名称为:" + Thread.currentThread().getName() + "在" + System.currentTimeMillis() + "离开printB");
    }

    synchronized public void printC() {
        System.out.println("线程名称为:" + Thread.currentThread().getName() + "在" + System.currentTimeMillis() + "进入printC");
        System.out.println("线程名称为:" + Thread.currentThread().getName() + "在" + System.currentTimeMillis() + "离开printC");
    }

}

<font size="2">ThreadA.java</font>

public class ThreadA extends Thread {
    private Service service;
    public ThreadA(Service service) {
        super();
        this.service = service;
    }
    @Override
    public void run() {
        service.printA();
    }
}

<font size="2">ThreadB.java</font>

public class ThreadB extends Thread {
    private Service service;
    public ThreadB(Service service) {
        super();
        this.service = service;
    }
    @Override
    public void run() {
        service.printB();
    }
}

<font size="2">ThreadC.java</font>

public class ThreadC extends Thread {
    private Service service;
    public ThreadC(Service service) {
        super();
        this.service = service;
    }
    @Override
    public void run() {
        service.printC();
    }
}

<font size="2">Run.java</font>

public class Run {
    public static void main(String[] args) {
        Service service = new Service();
        ThreadA a = new ThreadA(service);
        a.setName("A");
        a.start();

        ThreadB b = new ThreadB(service);
        b.setName("B");
        b.start();

        ThreadC c = new ThreadC(service);
        c.setName("C");
        c.start();
    }
}

<font size="2">运行结果:</font>
运行结果
从运行结果可以看出:静态同步synchronized方法与synchronized(class)代码块持有的锁一样,都是Class锁,Class锁对对象的所有实例起作用。synchronized关键字加到非static静态方法上持有的是对象锁。

线程A,B和线程C持有的锁不一样,所以A和B运行同步,但是和C运行不同步。
实例代码:

六 数据类型String的常量池属性

<font color="red">在Jvm中具有String常量池缓存的功能</font>

    String s1 = "a";
    String s2="a";
    System.out.println(s1==s2);//true

上面代码输出为true.<font color="red">这是为什么呢?</font>

字符串常量池中的字符串只存在一份! 即执行完第一行代码后,常量池中已存在 “a”,那么s2不会在常量池中申请新的空间,而是直接把已存在的字符串内存地址返回给s2。

因为数据类型String的常量池属性,所以synchronized(string)在使用时某些情况下会出现一些问题,比如两个线程运行
synchronized("abc"){
}和
synchronized("abc"){
}修饰的方法时,这两个线程就会持有相同的锁,导致某一时刻只有一个线程能运行。所以尽量不要使用synchronized(string)而使用synchronized(object)

参考:

《Java多线程编程核心技术》
《Java并发编程的艺术》

如果你觉得博主的文章不错,欢迎转发点赞。你能从中学到知识就是我最大的幸运。

欢迎关注我的微信公众号:“Java面试通关手册”(分享各种Java学习资源,面试题,以及企业级Java实战项目回复关键字免费领取)。另外我创建了一个Java学习交流群(群号:174594747),欢迎大家加入一起学习,这里更有面试,学习视频等资源的分享。

载入中...