带入gRPC:分布式链路追踪 gRPC-Opentracing-Zipkin

原文地址:带入gRPC:分布式链路追踪 gRPC + Opentracing + Zipkin
项目地址:https://github.com/EDDYCJY/go...

前言

在实际应用中,你做了那么多 Server 端,写了 N 个 RPC 方法。想看看方法的指标,却无处下手?

本文将通过 gRPC + Opentracing + Zipkin 搭建一个分布式链路追踪系统来实现查看整个系统的链路、性能等指标 🤓

Opentracing

是什么

OpenTracing 通过提供平台无关、厂商无关的API,使得开发人员能够方便的添加(或更换)追踪系统的实现

不过 OpenTracing 并不是标准。因为 CNCF 不是官方标准机构,但是它的目标是致力为分布式追踪创建更标准的 API 和工具

名词解释

Trace

一个 trace 代表了一个事务或者流程在(分布式)系统中的执行过程

Span

一个 span 代表在分布式系统中完成的单个工作单元。也包含其他 span 的 “引用”,这允许将多个 spans 组合成一个完整的 Trace

每个 span 根据 OpenTracing 规范封装以下内容:

  • 操作名称
  • 开始时间和结束时间
  • key:value span Tags
  • key:value span Logs
  • SpanContext

Tags

Span tags(跨度标签)可以理解为用户自定义的 Span 注释。便于查询、过滤和理解跟踪数据

Logs

Span logs(跨度日志)可以记录 Span 内特定时间或事件的日志信息。主要用于捕获特定 Span 的日志信息以及应用程序本身的其他调试或信息输出

SpanContext

SpanContext 代表跨越进程边界,传递到子级 Span 的状态。常在追踪示意图中创建上下文时使用

Baggage Items

Baggage Items 可以理解为 trace 全局运行中额外传输的数据集合

一个案例

image

图中可以看到以下内容:

  • 执行时间的上下文
  • 服务间的层次关系
  • 服务间串行或并行调用链

结合以上信息,在实际场景中我们可以通过整个系统的调用链的上下文、性能等指标信息,一下子就能够发现系统的痛点在哪儿

Zipkin

image

是什么

Zipkin 是分布式追踪系统。它的作用是收集解决微服务架构中的延迟问题所需的时序数据。它管理这些数据的收集和查找

Zipkin 的设计基于 Google Dapper 论文。

运行

docker run -d -p 9411:9411 openzipkin/zipkin

其他方法安装参见:https://github.com/openzipkin...

验证

访问 http://127.0.0.1:9411/zipkin/ 检查 Zipkin 是否运行正常

image

gRPC + Opentracing + Zipkin

在前面的小节中,我们做了以下准备工作:

  • 了解 Opentracing 是什么
  • 搭建 Zipkin 提供分布式追踪系统的功能

接下来实现 gRPC 通过 Opentracing 标准 API 对接 Zipkin,再通过 Zipkin 去查看数据

目录结构

新建 simple_zipkin_client、simple_zipkin_server 目录,目录结构如下:

go-grpc-example
├── LICENSE
├── README.md
├── client
│   ├── ...
│   ├── simple_zipkin_client
├── conf
├── pkg
├── proto
├── server
│   ├── ...
│   ├── simple_zipkin_server
└── vendor

安装

$ go get -u github.com/openzipkin/zipkin-go-opentracing
$ go get -u github.com/grpc-ecosystem/grpc-opentracing/go/otgrpc

gRPC

Server

package main

import (
    "context"
    "log"
    "net"

    "github.com/grpc-ecosystem/go-grpc-middleware"
    "github.com/grpc-ecosystem/grpc-opentracing/go/otgrpc"
    zipkin "github.com/openzipkin/zipkin-go-opentracing"
    "google.golang.org/grpc"

    "github.com/EDDYCJY/go-grpc-example/pkg/gtls"
    pb "github.com/EDDYCJY/go-grpc-example/proto"
)

type SearchService struct{}

func (s *SearchService) Search(ctx context.Context, r *pb.SearchRequest) (*pb.SearchResponse, error) {
    return &pb.SearchResponse{Response: r.GetRequest() + " Server"}, nil
}

const (
    PORT = "9005"

    SERVICE_NAME              = "simple_zipkin_server"
    ZIPKIN_HTTP_ENDPOINT      = "http://127.0.0.1:9411/api/v1/spans"
    ZIPKIN_RECORDER_HOST_PORT = "127.0.0.1:9000"
)

func main() {
    collector, err := zipkin.NewHTTPCollector(ZIPKIN_HTTP_ENDPOINT)
    if err != nil {
        log.Fatalf("zipkin.NewHTTPCollector err: %v", err)
    }

    recorder := zipkin.NewRecorder(collector, true, ZIPKIN_RECORDER_HOST_PORT, SERVICE_NAME)

    tracer, err := zipkin.NewTracer(
        recorder, zipkin.ClientServerSameSpan(false),
    )
    if err != nil {
        log.Fatalf("zipkin.NewTracer err: %v", err)
    }

    tlsServer := gtls.Server{
        CaFile:   "../../conf/ca.pem",
        CertFile: "../../conf/server/server.pem",
        KeyFile:  "../../conf/server/server.key",
    }
    c, err := tlsServer.GetCredentialsByCA()
    if err != nil {
        log.Fatalf("GetTLSCredentialsByCA err: %v", err)
    }

    opts := []grpc.ServerOption{
        grpc.Creds(c),
        grpc_middleware.WithUnaryServerChain(
            otgrpc.OpenTracingServerInterceptor(tracer, otgrpc.LogPayloads()),
        ),
    }
    ...
}
  • zipkin.NewHTTPCollector:创建一个 Zipkin HTTP 后端收集器
  • zipkin.NewRecorder:创建一个基于 Zipkin 收集器的记录器
  • zipkin.NewTracer:创建一个 OpenTracing 跟踪器(兼容 Zipkin Tracer)
  • otgrpc.OpenTracingClientInterceptor:返回 grpc.UnaryServerInterceptor,不同点在于该拦截器会在 gRPC Metadata 中查找 OpenTracing SpanContext。如果找到则为该服务的 Span Context 的子节点
  • otgrpc.LogPayloads:设置并返回 Option。作用是让 OpenTracing 在双向方向上记录应用程序的有效载荷(payload)

总的来讲,就是初始化 Zipkin,其又包含收集器、记录器、跟踪器。再利用拦截器在 Server 端实现 SpanContext、Payload 的双向读取和管理

Client

func main() {
    // the same as zipkin server
    // ...
    conn, err := grpc.Dial(":"+PORT, grpc.WithTransportCredentials(c),
        grpc.WithUnaryInterceptor(
            otgrpc.OpenTracingClientInterceptor(tracer, otgrpc.LogPayloads()),
        ))
    ...
}
  • otgrpc.OpenTracingClientInterceptor:返回 grpc.UnaryClientInterceptor。该拦截器的核心功能在于:

(1)OpenTracing SpanContext 注入 gRPC Metadata

(2)查看 context.Context 中的上下文关系,若存在父级 Span 则创建一个 ChildOf 引用,得到一个子 Span

其他方面,与 Server 端是一致的,先初始化 Zipkin,再增加 Client 端特需的拦截器。就可以完成基础工作啦

验证

启动 Server.go,执行 Client.go。查看 http://127.0.0.1:9411/zipkin/ 的示意图:

image

image

复杂点

image

image

来,自己实践一下

总结

在多服务下的架构下,串行、并行、服务套服务是一个非常常见的情况,用常规的方案往往很难发现问题在哪里(成本太大)。而这种情况就是分布式追踪系统大展拳脚的机会了

希望你通过本章节的介绍和学习,能够了解其概念和搭建且应用一个追踪系统 😄

参考

本系列示例代码

系列目录

资料


煎鱼的清汤锅
今天写代码了吗 :-) 博客地址:[链接]
8.1k 声望
12.7k 粉丝
0 条评论
推荐阅读
醒醒吧,未来不会有 Go2 了!
本周末在学习的时候,看到 Go 团队大当家 Russ Cox(下称:rsc)在近期分享的《GopherCon 2022: Russ Cox - Compatibility: How Go Programs Keep Working》,讲的是 Go 在兼容性方面的现有问题和思考,还埋了个...

煎鱼阅读 631

怎样用 PHP 来实现枚举?
在数学和计算机科学理论中,一个集的枚举是列出某些有穷序列集的所有成员的程序,或者是一种特定类型对象的计数。这两种类型经常(但不总是)重叠。枚举是一个被命名的整型常数的集合,枚举在日常生活中很常见,...

唯一丶25阅读 6.3k评论 4

前端如何入门 Go 语言
类比法是一种学习方法,它是通过将新知识与已知知识进行比较,从而加深对新知识的理解。在学习 Go 语言的过程中,我发现,通过类比已有的前端知识,可以更好地理解 Go 语言的特性。

robin21阅读 2.8k评论 3

封面图
SegmentFault 思否正式开源问答社区软件 Answer
作为国内领先的新一代技术问答社区,SegmentFault 思否团队在社区建设上有着多年积累。Answer 不仅拥有搭建问答平台(Q&A Platform)的基础功能,还在产品设计上融入了开发团队对社区发展的思考,并将其经验产品...

SegmentFault思否29阅读 4.2k评论 14

封面图
Golang 中 []byte 与 string 转换
string 类型和 []byte 类型是我们编程时最常使用到的数据结构。本文将探讨两者之间的转换方式,通过分析它们之间的内在联系来拨开迷雾。

机器铃砍菜刀21阅读 54.6k评论 1

年度最佳【golang】map详解
这篇文章主要讲 map 的赋值、删除、查询、扩容的具体执行过程,仍然是从底层的角度展开。结合源码,看完本文一定会彻底明白 map 底层原理。

去去100214阅读 11k评论 2

年度最佳【golang】GMP调度详解
Golang最大的特色可以说是协程(goroutine)了, 协程让本来很复杂的异步编程变得简单, 让程序员不再需要面对回调地狱, 虽然现在引入了协程的语言越来越多, 但go中的协程仍然是实现的是最彻底的. 这篇文章将通过分析...

去去100213阅读 11.1k评论 4

8.1k 声望
12.7k 粉丝
宣传栏