JDK1.8 HashMap解析

WillLiaowh

数据结构

JDK1.8的HashMap采用数组+单链表+红黑树的数据结构,数组和链表存储的是一个个Node对象,红黑树存储的是TreeNode对象
image.png

Node

    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
    }

TreeNode

    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }

        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }
    }

常用方法

常用API

V get(Object key); //获得指定key的值
V put(K key, V value);  //添加key-value对
void putAll(Map<? extends K, ? extends V> m);  //将指定Map中的key-value对复制到此Map中
V remove(Object key);  //删除该key-value

boolean containsKey(Object key); //判断是否存在该key的key-value对;是则返回true
boolean containsValue(Object value);  //判断是否存在该value的key-value对;是则返回true
 
Set<K> keySet();  //单独抽取key序列,将所有key生成一个Set
Collection<V> values();  //单独value序列,将所有value生成一个Collection

void clear(); // 清除HashMap中的所有key-value对
int size();  // 返回HashMap中所有key-value对的数量
boolean isEmpty(); // 判断HashMap是否为空,size == 0时表示为空 

使用

public class HashMapTest {

    public static void main(String[] args) {
      /**
        * 1. 声明1个 HashMap的对象
        */
        Map<String, Integer> map = new HashMap<String, Integer>();

      /**
        * 2. 向HashMap添加数据(放入键-值对)
        */
        map.put("Java", 1);
        map.put("HashMap", 2);
        map.put("List",3);
        map.put("set",4);

       /**
        * 3. 获取 HashMap 的某个数据
        */
        System.out.println("" + map.get("HashMap"));

      /**
        * 4. 遍历HashMap共有3种方法:分别针对Entry或key或value
        * 步骤1:获得Entry或key或value的集合
        * 步骤2:遍历,使用for循环或迭代器Iterator
        */

        // 方法1:获得Entry的Set集合再遍历
        // 获得Entry的Set集合
        Set<Map.Entry<String, Integer>> entrySet = map.entrySet();
        // 通过for循环遍历
        for(Map.Entry<String, Integer> entry : entrySet){
            System.out.print(entry.getKey());
            System.out.println(entry.getValue());
        }
        // 通过迭代器遍历
        // 先获得Entry的Iterator,再循环遍历
        Iterator iter1 = entrySet.iterator();
        while (iter1.hasNext()) {
            // 遍历时,需先获取entry,再分别获取key、value
            Map.Entry entry = (Map.Entry) iter1.next();
            System.out.print((String) entry.getKey());
            System.out.println((Integer) entry.getValue());
        }


        // 方法2:获得key的Set集合再遍历
        Set<String> keySet = map.keySet();
        // 通过for循环
        for(String key : keySet){
            System.out.print(key);
            System.out.println(map.get(key));
        }
        // 通过迭代器遍历
        // 先获得key的Iterator,再循环遍历
        Iterator iter2 = keySet.iterator();
        String key = null;
        while (iter2.hasNext()) {
            // 遍历时,需先获取key,再获取value
            key = (String)iter2.next();
            System.out.print(key);
            System.out.println(map.get(key));
        }


        // 方法3:获得value的集合再遍历
        Collection valueSet = map.values();
        // 获得values的Iterator,再循环遍历
        Iterator iter3 = valueSet.iterator();
        while (iter3.hasNext()) {
            System.out.println(iter3.next());
        }

    }
}

对于遍历方式,推荐使用针对 key-value对(Entry)的方式:效率高

  1. 对于遍历keySet,valueSet,实质上遍历了2次:
    第1次,for/iterator迭代器遍历;
    第2次 从HashMap中取出key的value操作
  2. 对于遍历entrySet,实质遍历了1次for/iterator迭代器遍历,Entry已经存储了key和 value

源码分析

主要属性

//默认容量
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
//最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
//加载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
//扩容阈值 = 容量 x 加载因子,当哈希表的大小 ≥ 扩容阈值时,就会扩容哈希表
int threshold
//存储数据的Node类型数组,长度=2的幂
transient Node<K,V>[] table;
//HashMap中存储的键值对的数量
transient int size


// 链表的树化阈值,即链表转成红黑树的阈值,当Node链表长度>该值时,则将链表转换成红黑树
static final int TREEIFY_THRESHOLD = 8; 
// 链表的还原阈值,即红黑树转为链表的阈值,当在扩容时,HashMap的数据存储位置会重新计算,在重新计算存储位置后,当红黑树内TreeNode数量 < 6时,则将 红黑树转换成链表
static final int UNTREEIFY_THRESHOLD = 6;
// 最小链表树化容量阈值,即 当Node数组长度 > 该值时,才允许树形化链表,否则则直接扩容,而不是树形化
static final int MIN_TREEIFY_CAPACITY = 64;

构造方法

    //加载因子,容量可指定
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

    //加载因子等于默认值,容量可指定  
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    //默认构造函数,加载因子,容量等于默认值
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    //可传入一个map的构造函数
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    }

put()方法

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //1. 若Node数组为空,则通过resize()初始化数组
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //2.计算key存放Node数组中的数组下标,判断这个数组下标Node数组上是否有Node存在
        //2.1若不存在,则在该位置新建一个Node节点    
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null)
        //2.2若存在 
        else {
            Node<K,V> e; K k;
            //2.1.1判断key是否与数组上的Node里面的key是否相同,是则用新的value值替换旧的value值   
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            //2.1.2若不相同,判断当前Node是红黑树,则在树中插入或更新键值对    
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //2.1.3若不相同,判断当前Node是链表,则在链表中插入或更新键值对     
            else {
            //遍历以该Node为头结点的链表,判断该key是否已存在
                for (int binCount = 0; ; ++binCount) {
                //若该key不存在,则将key-value添加到Node数组中,这里采用尾插法
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //链表长度 >= 桶的树化阈值=8,则将链表转换成红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //若该key已存在,则用新value替换旧value
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 插入成功后,判断实际存在的键值对数量size > 最大容量threshold
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

putTreeVal()

        //向红黑树插入或更新数据(键值对),遍历红黑树判断该节点的key是否与传入key相同,相同则新value覆盖旧value,不相同则插入
        final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

resize()方法

    final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table; //扩容前Node数组
        int oldCap = (oldTab == null) ? 0 : oldTab.length; //扩容前Node数组长度
        int oldThr = threshold; //扩容前Node数组阈值
        int newCap, newThr = 0;
        //Node数组长度大于0,非初始化数组
        if (oldCap > 0) {
            //扩容前Node数组容量超过最大值,不扩容
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //没有超过最大值,数组长度扩容为原来的2倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //Node数组长度=0,初始化数组
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
         // 遍历旧数组,重新计算每个Node在新数组的数组下标,使用尾插法将旧数组中的Node转移到新数组
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

get()方法

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }


    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //计算key存放Node数组中的数组下标,判断这个数组下标Node数组上是否有Node存在
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //1.在Node数组中找key相等的Node
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //2.在红黑树中找key相等的Node    
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //3.在链表中找key相等的Node    
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

源码总结

1.JDK1.8的HashMap采用数组+单链表+红黑树的数据结构,数组和链表存储的是一个个Node对象,红黑树存储的是TreeNode对象
2.添加key-value时会根据key值计算出对应的hash值,再根据hash值计算出对应的数组下标,判断这个数组在这个下标中是否有Node存在:
若没有,则在该位置新建一个Node节点
若有则判断这个Node是属于链表还是属于红黑树,然后分别遍历链表或红黑树,判断是否有相同的key,如果有则用新value替换旧value,如果没有就将Node添加到链表或红黑树,注意这里的链表插入采用尾插法
3.在将Node插入到链表时:
会进行是否红黑树树化的判断,链表长度 >= 桶的树化阈值=8,则将链表转换成红黑树
会进行是否需要扩容的判断,当Node的数量,或者说key-value的数量大于扩容阈值 = 当前容量 x 加载因子,新建一个数组,容量时是数组的2倍,将旧entry数组上的entry数据转移到newtable中,让当前的数组指向新数组从而完成扩容。

4.hashmap1.8与hashmap1.7的区别:
1.1.7采用数组+链表,1.8采用数据+链表+红黑树优化了查询速度
2.与1.7中hashmap的扩容机制不同:
a.hashmap1.8中的扩容后Node的位置是数组的原位置/原位置+旧容b.量,hashmap1.7则是原来位置
b.扩容时,hashmap1.8采用尾插法将数据转移到新数组中,hashmap1.7采用头插法

阅读 128

我要去大厂
世界上最伟大的力量是坚持。

世界上最伟大的力量是坚持。

27 声望
5 粉丝
0 条评论

世界上最伟大的力量是坚持。

27 声望
5 粉丝
宣传栏