首先构建CMakeLists.txt

cmake_minimum_required(VERSION 3.21)
project(ORB)

set(CMAKE_CXX_STANDARD 14)

find_package( OpenCV REQUIRED )
include_directories( ${OPENCV_INCLUDE_DIRS} )

add_executable(ORB main.cpp)
target_link_libraries(ORB ${OpenCV_LIBS})

编写cpp

#include <iostream>
#include <opencv2//core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>

using namespace std;

首先读取图片

cv::Mat img_1 = cv::imread("../1.png");
cv::Mat img_2 = cv::imread("../2.png");
cv::imshow("img_1", img_1);
cv::imshow("img_2", img_2);
cv::waitKey(0);
cv::destroyAllWindows();

其次进行ORB角点提取的一些初始化工作

vector<cv::KeyPoint> keypoints_1, keypoints_2;
cv::Mat descripions_1, descripions_2;
cv::Ptr<cv::FeatureDetector> detector = cv::ORB::create();    //检测FAST角点
cv::Ptr<cv::DescriptorExtractor> extractor = cv::ORB::create();    //提取描述子
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce-Hamming"); //匹配器,使用汉明距离

STEP1 & STEP2 检测FAST角点、计算BRIEF描述子

 //STEP1 检测FAST角点
detector->detect(img_1, keypoints_1);  //提取img_1中的角点,存储到keypoints_1中
detector->detect(img_2, keypoints_2);

//STEP2 计算BRIEF描述子
extractor->compute(img_1, keypoints_1, descripions_1);
extractor->compute(img_2, keypoints_2, descripions_2);

cv::Mat outimg_1, outimg_2;
cv::drawKeypoints(img_1, keypoints_1, outimg_1, cv::Scalar::all(-1),
                  cv::DrawMatchesFlags::DEFAULT);
cv::drawKeypoints(img_2, keypoints_2, outimg_2, cv::Scalar::all(-1),
                  cv::DrawMatchesFlags::DEFAULT);
cv::imshow("ORB Keypoints_img_1", outimg_1);
cv::imshow("ORB Keypoints_img_2", outimg_2);
cv::waitKey(0);
cv::destroyAllWindows();

STEP3 & STEP4 特征点匹配、特征点筛选

//STEP3 Match
vector<cv::DMatch> matches;     //用来存储匹配关系
matcher->match(descripions_1, descripions_2, matches);  //将descripions_1和descripions_2的匹配关系储存到DMatch中

//STEP4 匹配点筛选
auto min_max = minmax_element(matches.begin(), matches.end(),
                              [](const cv::DMatch &m1, const cv::DMatch &m2){return m1.distance < m2.distance;}
); //计算最小距离和最大距离
double min_dist = min_max.first->distance;
double max_dist = min_max.second->distance;

vector<cv::DMatch> good_matches;
for(int i = 0; i < descripions_1.rows; i++){
    if (matches[i].distance <= max(2 * min_dist, 30.0)){
        good_matches.push_back(matches[i]);
    }
}

STEP5 绘制匹配结果

//STEP5 绘制匹配结果
cv::Mat img_match;
cv::Mat img_goodmatch;
cv::drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_match);
cv::drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch);
cv::imshow("all matches", img_match);
cv::imshow("good matches", img_goodmatch);
cv::waitKey(0);
cv::destroyAllWindows();

利用对极几何计算本质矩阵E,分解出R和t

#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>

using namespace std;

void find_feature_matches(cv::Mat img1, cv::Mat img2, vector<cv::KeyPoint> &kps1, vector<cv::KeyPoint> &kps2, vector<cv::DMatch> &matches);

void pose_estimation_2d2d(vector<cv::KeyPoint> &kps1, vector<cv::KeyPoint> &kps2,vector<cv::DMatch> matches, cv::Mat &R, cv::Mat &t);

int main(int argc, char **argv) {

    cv::Mat img1, img2;
    img1 = cv::imread("../1.png");
    img2 = cv::imread("../2.png");

    vector<cv::KeyPoint> keypoints1, keypoints2;
    vector<cv::DMatch> matches;

    find_feature_matches(img1, img2, keypoints1, keypoints2, matches);
    cout << "find " << matches.size() << " points" << endl;
//    cv::Mat img_match;
//    cv::drawMatches(img1,keypoints1, img2, keypoints2, matches, img_match);
//    cv::imshow("img_match", img_match);
//    cv::waitKey(0);
//    cv::destroyAllWindows();
    cv::Mat R, t;
    pose_estimation_2d2d(keypoints1, keypoints2, matches, R, t);

    return 0;
}
void find_feature_matches(cv::Mat img1, cv::Mat img2, vector<cv::KeyPoint> &kps1, vector<cv::KeyPoint> &kps2, vector<cv::DMatch> &matches){
    cv::Mat descripions1, descripions2;
    cv::Ptr<cv::FeatureDetector> detector = cv::ORB::create();
    cv::Ptr<cv::DescriptorExtractor> extractor = cv::ORB::create();
    cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce-Hamming"); //汉明距离

    detector->detect(img1, kps1);
    detector->detect(img2, kps2);
    extractor->compute(img1, kps1, descripions1);
    extractor->compute(img2, kps2, descripions2);
    matcher->match(descripions1, descripions2, matches);

    //匹配点筛选
    auto min_max = minmax_element(matches.begin(), matches.end(),
                                  [](const cv::DMatch &m1, const cv::DMatch &m2){return m1.distance < m2.distance;}
    ); //计算最小距离和最大距离
    double min_dist = min_max.first->distance;
    double max_dist = min_max.second->distance;

    vector<cv::DMatch> good_matches;
    for(int i = 0; i < descripions1.rows; i++){
        if (matches[i].distance <= max(2 * min_dist, 30.0)){
            good_matches.push_back(matches[i]);
        }
    }
    matches = good_matches;
}

void pose_estimation_2d2d(vector<cv::KeyPoint> &kps1,
                            vector<cv::KeyPoint> &kps2,
                            vector<cv::DMatch> matches,
                            cv::Mat &R, cv::Mat &t){
    //内参矩阵K
    cv::Mat K = ( cv::Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    //把匹配点转换为vector<Point2f>的形式
    vector<cv::Point2f> points1;
    vector<cv::Point2f> points2;

    for ( int i = 0; i < (int) matches.size(); i++ )
    {
        points1.push_back ( kps1[matches[i].queryIdx].pt );
        points2.push_back ( kps2[matches[i].trainIdx].pt );
    }

    //计算基础矩阵
    cv::Mat F;
    F = cv::findFundamentalMat(points1, points2, cv::FM_8POINT);    //8点法求解
    cout << "F is" << endl << F << endl;

    //计算本质矩阵
    cv::Point2d principle_point(325.1, 249.7);  //相机光心
    double f = 521;  //相机焦距

    cv::Mat E;
    E = cv::findEssentialMat(points1, points2, f, principle_point);
    cout << "E is" << endl << E << endl;

    //计算单应矩阵
    cv::Mat H;
    H = cv::findHomography(points1, points2, cv::RANSAC, 3);
    cout << "H is" << endl << H << endl;

    //根据本质矩阵恢复旋转和平移信息
    cv::recoverPose(E, points1, points2, R, t, f, principle_point);
    cout << "R is" << endl << R << endl;
    cout << "t is" << endl << t << endl;
}

德布劳钦
1 声望1 粉丝

« 上一篇
Eigen初见