头图

Redis 为何使用近似 LRU 算法淘汰数据,而不是真实 LRU?

在《Redis 数据缓存满了怎么办?》我们知道 Redis 缓存满了之后能通过淘汰策略删除数据腾出空间给新数据。

淘汰策略如下所示:

redis内存淘汰

设置过期时间的 key

volatile-ttl、volatile-random、volatile-lru、volatile-lfu 这四种策略淘汰的数据范围是设置了过期时间的数据。

所有的 key

allkeys-lru、allkeys-random、allkeys-lfu 这三种淘汰策略无论这些键值对是否设置了过期时间,当内存不足都会进行淘汰。

这就意味着,即使它的过期时间还没到,也会被删除。当然,如果已经过了过期时间,即使没有被淘汰策略选中,也会被删除。

volatile-ttl 和 volatile-randon 很简单,重点在于 volatile-lru 和 volatile-lfu,他们涉及到 LRU 算法 和 LFU 算法。

今天码哥带大家一起搞定 Redis 的 LRU 算法…

近似 LRU 算法

什么是 LRU 算法呢?

LRU 算法的全程是 Least Rencently Used,顾名思义就是按照最近最久未使用的算法进行数据淘汰。

核心思想「如果该数据最近被访问,那么将来被发放稳的几率也更高」。

我们把所有的数据组织成一个链表:

  • MRU:表示链表的表头,代表着最近最常被访问的数据;
  • LRU:表示链表的表尾,代表最近最不常使用的数据。

LRU 算法

可以发现,LRU 更新和插入新数据都发生在链表首,删除数据都发生在链表尾

被访问的数据会被移动到 MRU 端,被访问的数据之前的数据则相应往后移动一位。

使用单链表可以么?

如果选用单链表,删除这个结点,需要 O(n) 遍历一遍找到前驱结点。所以选用双向链表,在删除的时候也能 O(1) 完成。

Redis 使用该 LRU 算法管理所有的缓存数据么?

不是的,由于 LRU 算法需要用链表管理所有的数据,会造成大量额外的空间消耗。

除此之外,大量的节点被访问就会带来频繁的链表节点移动操作,从而降低了 Redis 性能。

所以 Redis 对该算法做了简化,Redis LRU 算法并不是真正的 LRU,Redis 通过对少量的 key 采样,并淘汰采样的数据中最久没被访问过的 key。

这就意味着 Redis 无法淘汰数据库最久访问的数据。

Redis LRU 算法有一个重要的点在于可以更改样本数量来调整算法的精度,使其近似接近真实的 LRU 算法,同时又避免了内存的消耗,因为每次只需要采样少量样本,而不是全部数据。

配置如下:

maxmemory-samples 50

运行原理

大家还记得么,数据结构 redisObject 中有一个 lru 字段, 用于记录每个数据最近一次被访问的时间戳。

typedef struct redisObject {
    unsigned type:4;
    unsigned encoding:4;
    /* LRU time (relative to global lru_clock) or
     * LFU data (least significant 8 bits frequency
     * and most significant 16 bits access time).
     */
    unsigned lru:LRU_BITS; 
    int refcount;
    void *ptr;
} robj;

Redis 在淘汰数据时,第一次随机选出 N 个数据放到候选集合,将 lru 字段值最小的数据淘汰。

再次需要淘汰数据时,会重新挑选数据放入第一次创建的候选集合,不过有一个挑选标准:进入该集合的数据的 lru 的值必须小于候选集合中最小的 lru 值。

如果新数据进入候选集合的个数达到了 maxmemory-samples 设定的值,那就把候选集合中 lru 最小的数据淘汰。

这样就大大减少链表节点数量,同时不用每次访问数据都移动链表节点,大大提升了性能。

Java 实现 LRU Cahce

LinkedHashMap 实现

完全利用 Java 的LinkedHashMap实现,可以采用组合或者继承的方式实现,「码哥」使用组合的形式完成。

public class LRUCache<K, V> {
    private Map<K, V> map;
    private final int cacheSize;

    public LRUCache(int initialCapacity) {
        map = new LinkedHashMap<K, V>(initialCapacity, 0.75f, true) {
            @Override
            protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
                return size() > cacheSize;
            }
        };
        this.cacheSize = initialCapacity;
    }
}

重点在于 LinkedHashMap的第三个构造函数上,要把这个构造参数accessOrder设为true,代表LinkedHashMap内部维持访问顺序。

另外,还需要重写removeEldestEntry(),这个函数如果返回true,代表把最久未被访问的节点移除,从而实现淘汰数据。

自己实现

其中代码是从 LeetCode 146. LRU Cache 上摘下来的。代码里面有注释。

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/**
 * 在链头放最久未被使用的元素,链尾放刚刚添加或访问的元素
 */
class LRUCache {
    class Node {
        int key, value;
        Node pre, next;

        Node(int key, int value) {
            this.key = key;
            this.value = value;
            pre = this;
            next = this;
        }
    }

    private final int capacity;// LRU Cache的容量
    private Node dummy;// dummy节点是一个冗余节点,dummy的next是链表的第一个节点,dummy的pre是链表的最后一个节点
    private Map<Integer, Node> cache;//保存key-Node对,Node是双向链表节点

    public LRUCache(int capacity) {
        this.capacity = capacity;
        dummy = new Node(0, 0);
        cache = new ConcurrentHashMap<>();
    }

    public int get(int key) {
        Node node = cache.get(key);
        if (node == null) return -1;
        remove(node);
        add(node);
        return node.value;
    }

    public void put(int key, int value) {
        Node node = cache.get(key);
        if (node == null) {
            if (cache.size() >= capacity) {
                cache.remove(dummy.next.key);
                remove(dummy.next);
            }
            node = new Node(key, value);
            cache.put(key, node);
            add(node);
        } else {
            cache.remove(node.key);
            remove(node);
            node = new Node(key, value);
            cache.put(key, node);
            add(node);
        }
    }

    /**
     * 在链表尾部添加新节点
     *
     * @param node 新节点
     */
    private void add(Node node) {
        dummy.pre.next = node;
        node.pre = dummy.pre;
        node.next = dummy;
        dummy.pre = node;
    }

    /**
     * 从双向链表中删除该节点
     *
     * @param node 要删除的节点
     */
    private void remove(Node node) {
        node.pre.next = node.next;
        node.next.pre = node.pre;
    }
}

不要吝啬赞美,当别人做的不错,就给予他正反馈。少关注用「赞美」投票的事情,而应该去关注用「交易」投票的事情。

判断一个人是否牛逼,不是看网上有多少人夸赞他,而是要看有多少人愿意跟他发生交易或赞赏、支付、下单。

因为赞美太廉价,而愿意与他发生交易的才是真正的信任和支持。

码哥到现在已经写了近 23+ 篇 Redis 文章,赠送了很多书籍,收到过许多赞美和少量赞赏,感谢曾经赞赏过我的读者,谢谢。

我是「码哥」,大家可以叫我靓仔,好文请点赞,关于 LFU 算法,我们下一篇见。

历史好文

参考文献

https://redis.io/docs/manual/...

http://antirez.com/news/109

https://time.geekbang.org/col...

https://halfrost.com/lru_lfu_...

https://blog.csdn.net/csdlwzy...


Redis
吃透 Redis,深层次的掌握 Redis 核心原理以及实战技巧。一起搭建一套完整的知识框架建立一个完整的知识...
2.1k 声望
14k 粉丝
0 条评论
推荐阅读
Redis 发布订阅模式:原理拆解并实现一个消息队列
“65 哥,如果你交了个漂亮小姐姐做女朋友,你会通过什么方式将这个消息广而告之给你的微信好友?““那不得拍点女朋友的美照 + 亲密照弄一个九宫格图文消息在朋友圈发布大肆宣传,暴击单身狗。”像这种 65 哥通过朋...

码哥字节6阅读 1.8k

封面图
一文搞懂秒杀系统,欢迎参与开源,提交PR,提高竞争力。早日上岸,升职加薪。
前言秒杀和高并发是面试的高频考点,也是我们做电商项目必知必会的场景。欢迎大家参与我们的开源项目,提交PR,提高竞争力。早日上岸,升职加薪。知识点详解秒杀系统架构图秒杀流程图秒杀系统设计这篇文章一万多...

王中阳Go33阅读 2.4k评论 1

封面图
万字长文剖析ChatGPT
简单来说,ChatGPT 是自然语言处理(NLP)和强化学习(RL)的一次成功结合,考虑到读者可能只熟悉其中一个方向或者两个方向都不太熟悉,本文会将 ChatGPT 涉及到的所有知识点尽可能通俗易懂的方式展现出来,有基...

xiangzhihong15阅读 1.5k

计算机网络连环炮40问
本文已经收录到Github仓库,该仓库包含计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~

程序员大彬14阅读 1.7k

万字详解,吃透 MongoDB!
MongoDB 是一个基于 分布式文件存储 的开源 NoSQL 数据库系统,由 C++ 编写的。MongoDB 提供了 面向文档 的存储方式,操作起来比较简单和容易,支持“无模式”的数据建模,可以存储比较复杂的数据类型,是一款非常...

JavaGuide8阅读 1.6k

封面图
花了半个小时基于 ChatGPT 搭建了一个微信机器人
相信大家最近被 ChatGPT 刷屏了,其实在差不多一个月前就火过一次,不会那会好像只在程序员的圈子里面火起来了,并没有被大众认知到,不知道最近是因为什么又火起来了,而且这次搞的人尽皆知。

Java极客技术12阅读 3.1k评论 3

封面图
数据结构与算法:二分查找
一、常见数据结构简单数据结构(必须理解和掌握)有序数据结构:栈、队列、链表。有序数据结构省空间(储存空间小)无序数据结构:集合、字典、散列表,无序数据结构省时间(读取时间快)复杂数据结构树、 堆图二...

白鲸鱼9阅读 5.2k

2.1k 声望
14k 粉丝
宣传栏