七个好用的装饰器
分享七个好用的装饰器,方便你撸代码。
1、dispach
Python 天然支持多态,但使用 dispatch 可以让你的代码更加容易阅读。
安装:
pip install multipledispatch
使用:
>>> from multipledispatch import dispatch
>>> @dispatch(int, int)
... def add(x, y):
... return x + y
>>> @dispatch(object, object)
... def add(x, y):
... return "%s + %s" % (x, y)
>>> add(1, 2)
3
>>> add(1, 'hello')
'1 + hello'
2、click
click 可以很方便地让你实现命令行工具。
安装:
pip install click
使用:demo2.py :
import click
@click.command()
@click.option('--count', default=1, help='Number of greetings.')
@click.option('--name', prompt='Your name',
help='The person to greet.')
def hello(count, name):
"""Simple program that greets NAME for a total of COUNT times."""
for x in range(count):
click.echo(f"Hello {name}!")
if __name__ == '__main__':
hello()
运行结果:
❯ python demo2.py --count=3 --name=joih
Hello joih!
Hello joih!
Hello joih!
❯ python demo2.py --count=3
Your name: somenzz
Hello somenzz!
Hello somenzz!
Hello somenzz!
3、celery
分布式的任务队列,非 Celery 莫属。
from celery import Celery
app = Celery('tasks', broker='pyamqp://guest@localhost//')
@app.task
def add(x, y):
return x + y
4、deprecated
这个相信大家在使用别的包时都遇到过,当要下线一个老版本的函数的时候就可以使用这个装饰器。
安装:
pip install Deprecated
使用:demo4.py
from deprecated import deprecated
@deprecated ("This function is deprecated, please do not use it")
def func1():
pass
func1()
运行效果如下:
❯ python demo4.py
demo4.py:6: DeprecationWarning: Call to deprecated function (or staticmethod) func1. (This function is deprecated, please do not use it)
func1()
5、deco.concurrent
安装:
pip install deco
使用 DECO 就像在 Python 程序中查找或创建两个函数一样简单。我们可以用 @concurrent 装饰需要并行运行的函数,用 @synchronized 装饰调用并行函数的函数,使用举例:
from deco import concurrent, synchronized
@concurrent # We add this for the concurrent function
def process_url(url, data):
#Does some work which takes a while
return result
@synchronized # And we add this for the function which calls the concurrent function
def process_data_set(data):
results = {}
for url in urls:
results[url] = process_url(url, data)
return results
6、cachetools
缓存工具
安装:
pip install cachetools
使用:
from cachetools import cached, LRUCache, TTLCache
# speed up calculating Fibonacci numbers with dynamic programming
@cached(cache={})
def fib(n):
return n if n < 2 else fib(n - 1) + fib(n - 2)
# cache least recently used Python Enhancement Proposals
@cached(cache=LRUCache(maxsize=32))
def get_pep(num):
url = 'http://www.python.org/dev/peps/pep-%04d/' % num
with urllib.request.urlopen(url) as s:
return s.read()
# cache weather data for no longer than ten minutes
@cached(cache=TTLCache(maxsize=1024, ttl=600))
def get_weather(place):
return owm.weather_at_place(place).get_weather()
7、retry
重试装饰器,支持各种各样的重试需求。
安装:
pip install tenacity
使用:
import random
from tenacity import retry
@retry
def do_something_unreliable():
if random.randint(0, 10) > 1:
raise IOError("Broken sauce, everything is hosed!!!111one")
else:
return "Awesome sauce!"
@retry(stop=stop_after_attempt(7))
def stop_after_7_attempts():
print("Stopping after 7 attempts")
raise Exception
@retry(stop=stop_after_delay(10))
def stop_after_10_s():
print("Stopping after 10 seconds")
raise Exception
@retry(stop=(stop_after_delay(10) | stop_after_attempt(5)))
def stop_after_10_s_or_5_retries():
print("Stopping after 10 seconds or 5 retries")
raise Exception
以上就是本次分享的所有内容,如果你觉得文章还不错,欢迎关注公众号:Python编程学习圈,每日干货分享,发送“J”还可领取大量学习资料。或是前往编程学习网,了解更多编程技术知识。
推荐阅读
使用VScode的几点感受,对比Pycharm、Jupyter优劣势
之前一直是PyCharm+Jupyter的组合,能满足几乎所有的Python开发需求。最近我开始用vscode,发现很香。PyCharm适合做项目开发,或者平常写写脚本,算是全能型IDE。但PyCharm体积大,对硬件消耗厉害,不够轻便。Jup...
Python技术大本营阅读 600
基于Sanic的微服务基础架构
使用python做web开发面临的一个最大的问题就是性能,在解决C10K问题上显的有点吃力。有些异步框架Tornado、Twisted、Gevent 等就是为了解决性能问题。这些框架在性能上有些提升,但是也出现了各种古怪的问题难以...
jysong赞 6阅读 3.9k评论 3
滚蛋吧,正则表达式!
你是不是也有这样的操作,比如你需要使用「电子邮箱正则表达式」,首先想到的就是直接百度上搜索一个,然后采用 CV 大法神奇地接入到你的代码中?
良许赞 4阅读 2.2k
又一款眼前一亮的Linux终端工具!
今天给大家介绍一款最近发现的功能十分强大,颜值非常高的一款终端工具。这个神器我是在其他公众号文章上看到的,但他们都没把它的强大之处介绍明白,所以我自己体验一波后,再向大家分享自己的体验。
良许赞 5阅读 1.8k
FastAPI性能碾压Flask?
不止一次的听过,FastAPI性能碾压Flask,直追Golang,不过一直没有测试过,今天闲着没事测试一下看看结果。不知道是哪里出了问题,结果大跌眼镜。
二毛erma0赞 2阅读 10.1k评论 3
程序员适合创业吗?
大家好,我是良许。从去年 12 月开始,我已经在视频号、抖音等主流视频平台上连续更新视频到现在,并得到了不错的评价。每个视频都花了很多时间精力用心制作,欢迎大家关注哦~考虑到有些小伙伴没有看过我的视频,...
良许赞 3阅读 1.8k
Python之如何优雅的重试
为了避免偶尔的网络连接失败,需要加上重试机制,那么最简单的形式就是在对应的代码片段加一个循环,循环体里使用异常捕获,连接成功时退出循环,否则就重复执行相关逻辑,此时修改之后的函数f如下
Harpsichord1207赞 3阅读 7.3k
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。