从序号和确认号理解TCP三次握手

头部信息

TCP首部存储的数据和建立连接有关,具体每个字段的用途可以参考这一篇文章,其中序号和确认号决定了发送数据的内容。

  • 头部中间部分"保留"和"窗口"中间是标志位,会携带一些连接的信息
  • 序号(Sequence Number):当前TCP数据部分的第一个字节编号(实际是一个非常大的值,非常大的值 - 固定值 = 小的编号,同一请求有一个固定值,固定值来源于建立连接时seq=0时)
  • 确认号(Acknowledgment Number):ACK=1时才有效,期望对方下一次传过来的TCP数据部分的第一个字节编号

三次握手

建立连接的时候会有三步,也就是我们所说的三次握手。

  • SYN=1,ACK=0,序号 seq=x(连接之初的客户端固定值,简单来说就是0),没有发任何字节,所以数据长度为0,此时是客户端向服务器发送的建立连接请求。
  • SYN=1,ACK=1,序号 seq=y(连接之初的服务器固定值,简单来说就是0),确认号 ack = x+1,数据长度为0,此时是服务器向客户端发送响应,表示希望收到客户端发送第1个字节的数据。
  • SYN=0,ACK=1,序号 seq=x+1,确认号 ack=y+1,数据部分长度为0,此时客户端确认收到服务器的确认消息,建立连接完成。表示希望收到服务器第一个字节的数据。

连接时,存在一些状态的变化

  • CLOSED:client处于关闭状态
  • LISTEN:server处于监听状态,等待client连接
  • SYN-RCVD:表示server接受到了SYN报文,当收到client的ACK报文后,它会进入到ESTABLISHED状态
  • SYN-SENT:表示client已发送SYN报文,等待server的第2次握手
  • ESTABLISHED:表示连接已经建立

抓包数据来看如下所示

疑问

那么可能有人会问,为什么需要三次握手,两次不就可以互相确认了吗?

三次握手的目的:防止server端一直等待,浪费资源。
如果只有两次握手,第一次发送SYN=1时因网络延迟没发送成功,那么客户端会再发送一次SYN=1的建立请求,此时发送成功,客户端和服务器之间完成通信。
过了一段时间,第一次发送的SYN=1消息才发送到服务器,此时服务器以为是新的建立连接过程,又会回复一个SYN=1,ACK=1的响应。
如果只有两次连接,服务器会以为成功建立连接,但实际上客户端的数据已经获取到,不会再发送请求了,服务器就会处于一直等待的状态。
采用三次握手就可以防止这样的情况,因为第三次请求没发送给服务器,所以它处于同步已接受状态,如果一直没有收到第三条请求则会关闭连接。

那如果第三次握手失败了呢?

此时server的状态为SYN-RCVD,若等不到client的ACK,server会重新发送SYN+ACK包。如果server多次重发SYN+ACK都等不到client的ACK,就会发送RST包,强制关闭连接。

数据传输

当获取连接后,就可以开始真正的传输数据啦

  • 服务器发送第一条请求给客户端,SYN=0,ACK=1,seq=1,ack=583,len=1280,发送数据的序号从1开始,希望对方发送数据从583字节开始。
  • 服务器发送第二条请求给客户端,,SYN=0,ACK=1,seq=1281,ack=583,len=2560,因为上一次请求发送了1280字节的数据,所以此条数据从1281开始,还没有收到客户端的数据,所以确认号仍然为583。
  • 服务器发送第三条请求给客户端,SYN=0,ACK=1,seq=3841,ack=583,len=1280,到上一次请求的数据已经发送到了1280+2560,所以此次从3841字节的数据开始。
  • 客户端回应服务器发送的请求,SYN=0,ACK=1,seq=583,ack=3841,len=0,因为服务器希望收到583字节开始的数据,所以这里序号为583,确认号为3841,希望收到对方以3841开始的数据(这里可能上一条数据还没有收到),长度为0表示只是确认收到的响应。

到这里就是完整的【建立连接】,以及发送请求流程。关于【释放连接】,会在下一篇文章中描述。

以上就是关于 从序号和确认号理解TCP三次握手 的内容 , 更多有关 前端网络协议 的内容可以参考我其它的博文,持续更新中~

hello

118 声望
10 粉丝
0 条评论
推荐阅读
去中心化组件共享方案 —— Webpack Module Federation(模块联邦)
在大型应用中, 我们可能会对其进行拆分,分成容器、主应用和多个子应用,使拆分后的应用独立开发与部署,更加容易维护。但无论是微应用、公共模块应用,都需要放到容器中才能使用。

一颗冰淇淋阅读 594

TCP 三次握手,给我长脸了噢
之前有个小伙伴在技术交流群里咨询过一个问题,我当时还给提供了点排查思路,是个典型的八股文转实战分析的案例,我觉得挺有意思,趁着中午休息简单整理出来和大家分享下,有不严谨的地方欢迎大家指出。

程序员小富4阅读 322

封面图
“老默我想吃鱼了”与五层网络模型
最近看狂飙有点上头了😂,还专门把几百人的群昵称改成了“摸鱼强盛集团”,群友们也很积极,昵称都改成了狂飙中的人名,聊着聊着嘴里蹦出几句狂飙中的台词,一时间感觉还蛮有意思的,群里充满了欢心笑语,给疲惫了一...

法医3阅读 660

封面图
什么是内网穿透?为什么使用内网穿透?
微信公众号的开发过程中,微信服务器和项目的后端会相互发送信息。如果需要测试,就必须保证项目可以被公网访问,但大多数情况下家庭网络都是经过了运营商层层 NAT 之后的网络,并没有公网IP,此时就需要使用内网...

LYX66663阅读 582

再快一点?动态内容如何加速
近年来 Web 3 的概念在程序员的小圈子也几乎是人尽皆知了。功能再强,噱头再足,但是如果访问速度没有跟上,一起都是浮云。哪怕拿现在已经成熟的 Web 2.0来说,内容也相当丰富,动态网页、个性化内容、电子交易数...

菜农曰阅读 964

封面图
HTTPS 是这样握手的
HTTP协议默认是明文传输,存在一定的安全隐患,容易被中间人窃听和攻击,在 加密解决HTTP协议带来的安全问题 中提到使用哈希、对称加密、非对称加密等方式对数据加密,能解决数据安全的问题。

一颗冰淇淋阅读 843

TCP协议是如何保证数据的可靠传输的
一个数据包,从聊天框里发出,消息会从聊天软件所在的用户空间拷贝到内核空间的发送缓冲区(send buffer),数据包在传输层添加一个TCP头部、在网络层添加一个IP首部,进入到数据链路层添加一个首部和尾部,将其...

爆裂Gopher阅读 445

封面图

hello

118 声望
10 粉丝
宣传栏