头图

Mysql索引覆盖

作者:京东零售 孙涛

1.什么是覆盖索引

通常情况下,我们创建索引的时候只关注where条件,不过这只是索引优化的一个方向。优秀的索引设计应该纵观整个查询,而不仅仅是where条件部分,还应该关注查询所包含的列。索引确实是一种高效的查找数据方式,但是mysql也可以从索引中直接获取数据,这样就不在需要读数据行了。 覆盖索引(covering index) 指一个查询语句的执行只需要从辅助索引中就可以得到查询记录,而不需要回表,去查询聚集索引中的记录。可以称之为实现了索引覆盖。 在mysql数据库中,如何看出一个sql是否实现了索引覆盖呢?





从执行计划看,Extra的信息为using index ,即用到了索引覆盖。

2.覆盖索引为什么快

innodb存储引擎底层实现包括B+树索引和哈希索引,innodb存储引擎默认的索引模型/结构是B+树,所以大部分时候我们使用的都是B+树索引,因为它良好的性能和特性更适合于构建高并发系统。根据索引的存储方式来划分,索引可以分为聚簇索引和非聚簇索引。聚簇索引的特点是叶子节点包含了完整的记录行,而非聚簇索引的叶子节点只有索引字段和主键ID。非聚簇索引中因为不含有完整的数据信息,查找完整的数据记录需要回表,所以一次查询操作实际上要做两次索引查询。而如果所有的索引查询都要经过两次才能查到,那么肯定会引起效率下降,毕竟能少查一次就少查一次。

覆盖索引就实现了从非聚簇索引中直接获取数据,所以效率会提升。





3.SQL优化场景

(1)无where条件

请看下面的sql









执行计划中,type为ALL,代表进行了全表扫描,扫描行数达到了26274308,所以执行时间为9.25秒,也是正常的。

那么如何优化?优化措施很简单,就是对查询列建立索引。如下,

alter table instance_space_history add index idx_org1(org1); 看添加索引后的执行计划





Possible_keys为null,说明没有where条件时优化器无法通过索引检索数据;

但是看extra的信息 Using index,即从索引中获取数据,减少了读取的数据块的数量 。





在看实际优化效果,扫描行数没变,但是使用了覆盖索引,查询时间从9.25秒缩短到5.67秒。 思考: 无where条件的查询,可以通过索引来实现索引覆盖查询。但前提条件是,查询返回的字段数足够少,更不用说select *之类的了。毕竟,建立key length过长的索引,始终不是一件好事情。

(2)where条件区分度低

使用区分度极低的字段作为where条件的查询SQL,对于dba或者研发人员优化一直是比较头疼的问题,这里介绍一种思路,就是通过索引覆盖来优化 。 t_material_image是一张8亿多数据的大表,where条件的material_type字段区分度很低,下面是没加任何索引的执行计划和查询时间(7.35秒)。









最容易想到的优化方式,就是给where条件的字段加索引,添加索引语句如下: alter table t_material_image add index idx_material_type (material_type);

再来看执行计划





通过执行计划和测试结果看,的确是有效果的,但是走索引后的查询效率依然不能满足我们期望。 然后试着给material_type,material_id添加联合索引。 alter table t_material_image add index idx_material_id_type (material_type,material_id);









从这个sql的执行计划看,出现Using index,实现了索引覆盖;再看执行时间,性能得到了巨大的提升,居然已经可以跑到0.85s左右了。

思考:

当where条件字段区分度低(过滤性差),且where条件与查询字段总数较少的情况下,使用索引覆盖优化,是个不错的选择。

(3)查询仅选择主键

对于Innodb的辅助索引,它的叶子节点存储的是索引值和指向主键索引的位置,然后需要通过主键在查询表的字段值,所以辅助索引存储了主键的值。如果查询所选择的列只有主键,应该考虑通过索引覆盖优化。 看下面的两个sql,字段 pin 和completion_time有联合索引,where条件差别只有comment_voucher_status = 0,但是执行时间差距巨大(第一个sql0.58s,第二个sql0.2s),为什么呢?是不是很困惑

















我们来看执行计划,主要差别体现在extra,第一个sql用到Using index condition,而第二个sql用到Using index,因为pin和completion_time有联合索引,而且查询结果只选择了主键id,所以第二个sql覆盖了所有的where条件字段和查询结果选择字段,故实现了索引覆盖。 思考:

当查询字段只有主键时,更容易实现索引覆盖,因为索引只要覆盖where条件,就可以实现索引覆盖。

4.总结与建议

索引的核心作用: (1)通过索引检索仅需要数据 (2)从索引中直接获取查询结果
索引覆盖的条件: (1)Select查询的返回列包含在索引列中 (2)有where条件时,where条件中要包含索引列或复合索引的前导列 (3)查询结果的总字段长度可以接受


京东云技术新知
京东云最新产品信息、技术干货以及最新活动发布,拥抱技术,与开发者携手创造未来!

京东云开发者(Developer of JD Technology)是京东云旗下为AI、云计算、IoT等相关领域开发者提供技术分...

2k 声望
5.1k 粉丝
0 条评论
推荐阅读
利用Jackson序列化实现数据脱敏
在项目中有些敏感信息不能直接展示,比如客户手机号、身份证、车牌号等信息,展示时均需要进行数据脱敏,防止泄露客户隐私。脱敏即是对数据的部分信息用脱敏符号(*)处理。

京东云开发者1

封面图
万字详解,吃透 MongoDB!
MongoDB 是一个基于 分布式文件存储 的开源 NoSQL 数据库系统,由 C++ 编写的。MongoDB 提供了 面向文档 的存储方式,操作起来比较简单和容易,支持“无模式”的数据建模,可以存储比较复杂的数据类型,是一款非常...

JavaGuide8阅读 1.8k

封面图
万字长文~vue+express+mysql带你彻底搞懂项目中的权限控制(附所有源码)
所谓的权限,其实指的就是:用户是否能看到,以及是否允许其对数据进行增删改查的操作,因为现在开发项目的主流方式是前后端分离,所以整个项目的权限是后端权限控制搭配前端权限控制共同实现的

水冗水孚11阅读 1.6k

花了几个月时间把 MySQL 重新巩固了一遍,梳理了一篇几万字 “超硬核” 的保姆式学习教程!(持续更新中~)
MySQL 是最流行的关系型数据库管理系统,在 WEB 应用方面 MySQL 是最好的 RDBMS(Relational Database Management System:关系数据库管理系统)应用软件之一。

民工哥11阅读 1.2k

封面图
一次偶然机会发现的MySQL“负优化”
今天要讲的这件事和上述的两个sql有关,是数年前遇到的一个关于MySQL查询性能的问题。主要是最近刷到了一些关于MySQL查询性能的文章,大部分文章中讲到的都只是一些常见的索引失效场合,于是我回想起了当初被那个...

骑牛上青山8阅读 2.3k评论 2

程序员英语学习指南
动机为什么程序员要学习英语?工作:我们每天接触的代码都是英文的、包括很多技术文档也是英文的学习:最新最前沿的技术最开始都是只有English版本就业:学好英语让你的就业范围扩大到全球,而不只限于国内目标读...

九旬7阅读 699

初学后端,如何做好表结构设计?
这篇文章介绍了设计数据库表结构应该考虑的4个方面,还有优雅设计的6个原则,举了一个例子分享了我的设计思路,为了提高性能我们也要从多方面考虑缓存问题。

王中阳Go4阅读 894评论 2

封面图

京东云开发者(Developer of JD Technology)是京东云旗下为AI、云计算、IoT等相关领域开发者提供技术分...

2k 声望
5.1k 粉丝
宣传栏