头图

TCP 三次握手,给我长脸了噢

大家好,我是小富~

个人资源分享网站:FIRE

本文收录在 Springboot-Notebook 面试锦集

前言

之前有个小伙伴在技术交流群里咨询过一个问题,我当时还给提供了点排查思路,是个典型的八股文转实战分析的案例,我觉得挺有意思,趁着中午休息简单整理出来和大家分享下,有不严谨的地方欢迎大家指出。

问题分析

我们先来看看他的问题,下边是他在群里对这个问题的描述,我大致的总结了一下。

他们有很多的 IOT 设备与服务端建立连接,当增加设备并发请求变多,TCP连接数在接近1024个时,可用TCP连接数会降到200左右并且无法建立新连接,而且分析应用服务的GC和内存情况均未发现异常。

从他的描述中我提取了几个关键值,1024200无法建立新连接

看到这几个数值,直觉告诉我大概率是TCP请求溢出了,我给的建议是先直接调大全连接队列半连接队列的阀值试一下效果。

那为什么我会给出这个建议?

半连接队列和全连接队列又是个啥玩意?

弄明白这些回顾下TCP的三次握手流程,一切就迎刃而解了~

回顾TCP

TCP三次握手,熟悉吧,面试八股里经常全文背诵的题目。

话不多说先上一张图,看明白TCP连接的整个过程。

TCP三次握手

第一步:客户端发起SYN_SEND连接请求,服务端收到客户端发起的SYN请求后,会先将连接请求放入半连接队列;

第二步:服务端向客户端响应SYN+ACK

第三步:客户端会返回ACK确认,服务端收到第三次握手的 ACK 后标识连接成功。如果这时全连接队列没满,内核会把连接从半连接队列移除,创建新的连接并将其添加到全连接队列,等待客户端调用accept()方法将连接取出来使用;

TCP协议三次握手的过程,Linux内核维护了两个队列,SYN半连接队列和accepet全连接队列。即然叫队列,那就存在队列被压满的时候,这种情况我们称之为队列溢出

当半连接队列或全连接队列满了时,服务器都无法接收新的连接请求,从而导致客户端无法建立连接。

全连接队列

队列信息

全连接队列溢出时,首先要查看全连接队列的状态,服务端通常使用 ss 命令即可查看,ss 命令获取的数据又分为 LISTEN状态 和 非LISTEN两种状态下,通常只看LISTEN状态数据就可以。

LISTEN状态

Recv-Q:当前全连接队列的大小,表示上图中已完成三次握手等待可用的 TCP 连接个数;

Send-Q:全连接最大队列长度,如上监听8888端口的TCP连接最大全连接长度为128;

# -l 显示正在Listener 的socket
# -n 不解析服务名称
# -t 只显示tcp
[root@VM-4-14-centos ~]#  ss -lnt | grep 8888
State  Recv-Q Send-Q  Local Address:Port   Peer Address:Port
LISTEN     0   100       :::8888                  :::*               

非LISTEN 状态下Recv-Q、Send-Q字段含义有所不同

Recv-Q:已收到但未被应用进程读取的字节数;

Send-Q:已发送但未收到确认的字节数;

# -n 不解析服务名称
# -t 只显示tcp
[root@VM-4-14-centos ~]#  ss -nt | grep 8888
State  Recv-Q Send-Q  Local Address:Port   Peer Address:Port
ESTAB     0   100       :::8888                  :::*               

队列溢出

一般在请求量过大,全连接队列设置过小会发生全连接队列溢出,也就是LISTEN状态下 Send-Q < Recv-Q 的情况。接收到的请求数大于TCP全连接队列的最大长度,后续的请求将被服务端丢弃,客户端无法创建新连接

# -l 显示正在Listener 的socket
# -n 不解析服务名称
# -t 只显示tcp
[root@VM-4-14-centos ~]#  ss -lnt | grep 8888
State  Recv-Q Send-Q  Local Address:Port   Peer Address:Port
LISTEN     200   100       :::8888                  :::*               

如果发生了全连接队列溢出,我们可以通过netstat -s命令查询溢出的累计次数,若这个times持续的增长,那就说明正在发生溢出。

[root@VM-4-14-centos ~]# netstat -s | grep overflowed
  7102 times the listen queue of a socket overflowed #全连接队列溢出的次数

拒绝策略

在全连接队列已满的情况,Linux提供了不同的策略去处理后续的请求,默认是直接丢弃,也可以通过tcp_abort_on_overflow配置来更改策略,其值 0 和 1 表示不同的策略,默认配置 0。

# 查看策略
[root@VM-4-14-centos ~]# cat /proc/sys/net/ipv4/tcp_abort_on_overflow
0

tcp_abort_on_overflow = 0:全连接队列已满时,服务端直接丢弃客户端发送的 ACK,此时服务端仍然是 SYN_RCVD 状态,在该状态下服务端会重试几次向客户端推送 SYN + ACK

重试次数取决于tcp_synack_retries配置,重试次数超过此配置后后,服务端不在重传,此时客户端发送数据,服务端直接向客户端回复RST复位报文,告知客户端本次建立连接已失败。

RST: 连接 reset 重置消息,用于连接的异常关闭。常用场景例如:服务端接收不存在端口的连接请求;客户端或者服务端异常,无法继续正常的连接处理,发送 RST 终止连接操作;长期未收到对方确认报文,经过一定时间或者重传尝试后,发送 RST 终止连接。
[root@VM-4-14-centos ~]# cat /proc/sys/net/ipv4/tcp_synack_retries
0

tcp_abort_on_overflow = 1:全连接队列已满时,服务端直接丢弃客户端发送的 ACK,直接向客户端回复RST复位报文,告知客户端本次连接终止,客户端会报错提示connection reset by peer

队列调整

解决全连接队列溢出我们可以通过调整TCP参数来控制全连接队列的大小,全连接队列的大小取决于 backlog 和 somaxconn 两个参数。

这里需要注意一下,两个参数要同时调整,因为取的两者中最小值min(backlog,somaxconn),经常发生只挑调大其中一个另一个值很小导致不生效的情况。

backlog 是在socket 创建的时候 Listen() 函数传入的参数,例如我们也可以在 Nginx 配置中指定 backlog 的大小。

server {
   listen 8888 default backlog = 200
   server_name fire100.top
   .....
}

somaxconn 是个 OS 级别的参数,默认值是 128,可以通过修改 net.core.somaxconn 配置。

[root@localhost core]# sysctl -a | grep net.core.somaxconn
net.core.somaxconn = 128
[root@localhost core]# sysctl -w net.core.somaxconn=1024
net.core.somaxconn = 1024
[root@localhost core]# sysctl -a | grep net.core.somaxconn
net.core.somaxconn = 1024

如果服务端处理请求的速度跟不上连接请求的到达速度,队列可能会被快速填满,导致连接超时或丢失。应该及时增加队列大小,以避免连接请求被拒绝或超时。

增大该参数的值虽然可以增加队列的容量,但是也会占用更多的内存资源。一般来说,建议将全连接队列的大小设置为服务器处理能力的两倍左右

半连接队列

队列信息

上边TCP三次握手过程中,我们知道服务端SYN_RECV状态的TCP连接存放在半连接队列,所以直接执行如下命令查看半连接队列长度。

[root@VM-4-14-centos ~]  netstat -natp | grep SYN_RECV | wc -l
1111

队列溢出

半连接队列溢出最常见的场景就是,客户端没有及时向服务端回ACK,使得服务端有大量处于SYN_RECV状态的连接,导致半连接队列被占满,得不到ACK响应半连接队列中的 TCP 连接无法移动全连接队列,以至于后续的SYN请求无法创建。这也是一种常见的DDos攻击方式。

查看TCP半连接队列溢出情况,可以执行netstat -s命令,SYNs to LISTEN前的数值表示溢出的次数,如果反复查询几次数值持续增加,那就说明半连接队列正在溢出。

[root@VM-4-14-centos ~]# netstat -s | egrep “listen|LISTEN”
1606 times the listen queue of a socket overflowed
1606 SYNs to LISTEN sockets ignored

队列调整

可以修改 Linux 内核配置 /proc/sys/net/ipv4/tcp_max_syn_backlog来调大半连接队列长度。

[root@VM-4-14-centos ~]# echo 2048 > /proc/sys/net/ipv4/tcp_max_syn_backlog

为什么建议

看完上边对两个队列的粗略介绍,相信大家也能大致明白,为啥我会直接建议他去调大队列了。

因为从他的描述中提到了两个关键值,TCP连接数增加至1024个时,可用连接数会降至200以内,一般centos系统全连接队列长度一般默认 128,半连接队列默认长度 1024。所以队列溢出可以作为第一嫌疑对象。

全连接队列默认大小 128

[root@localhost core]# sysctl -a | grep net.core.somaxconn
net.core.somaxconn = 128

半连接队列默认大小 1024

[root@iZ2ze3ifc44ezdiif8jhf7Z ~]# cat /proc/sys/net/ipv4/tcp_max_syn_backlog
1024

总结

简单分享了一点TCP全连接队列、半连接队列的相关内容,讲的比较浅显,如果有不严谨的地方欢迎留言指正,毕竟还是个老菜鸟。

全连接队列、半连接队列溢出是比较常见,但又容易被忽视的问题,往往上线会遗忘这两个配置,一旦发生溢出,从CPU线程状态内存看起来都比较正常,偏偏连接数上不去。

定期对系统压测是可以暴露出更多问题的,不过话又说回来,就像我和小伙伴聊的一样,即便测试环境程序跑的在稳定,到了线上环境也总会出现各种奇奇怪怪的问题。

我是小富,下期见~

技术交流,欢迎关注公众号:程序员小富

Java进阶课
关注公众号:【程序员内点事】,架构技术、面试资料持续分享
2.5k 声望
5.2k 粉丝
0 条评论
推荐阅读
分库分表的 21 条法则,hold 住!
还是不着急实战,咱们先介绍下在分库分表架构实施过程中,会接触到的一些通用概念,了解这些概念能够帮助理解市面上其他的分库分表工具,尽管它们的实现方法可能存在差异,但整体思路基本一致。因此,在开始实际...

程序员小富8阅读 797评论 3

封面图
花了几个月时间把 MySQL 重新巩固了一遍,梳理了一篇几万字 “超硬核” 的保姆式学习教程!(持续更新中~)
MySQL 是最流行的关系型数据库管理系统,在 WEB 应用方面 MySQL 是最好的 RDBMS(Relational Database Management System:关系数据库管理系统)应用软件之一。

民工哥13阅读 1.9k

封面图
算法可视化:一文弄懂 10 大排序算法
在本文中,我们将通过动图可视化加文字的形式,循序渐进全面介绍不同类型的算法及其用途(包括原理、优缺点及使用场景)并提供 Python 和 JavaScript 两种语言的示例代码。除此之外,每个算法都会附有一些技术说...

破晓L7阅读 827

封面图
从 B 站出发,用 Chrome devTools performance 分析页面如何渲染
页面是如何渲染的?通常会得到“解析 HTML、css 合成 Render Tree,就可以渲染了”的回答。但是具体都做了些什么,却很少有人细说,我们今天就从 Chrome 的性能工具开始,具体看看一个页面是如何进行渲染的,以及进...

云叔_又拍云6阅读 755

封面图
「刷起来」Go必看的进阶面试题详解
逃逸分析是Go语言中的一项重要优化技术,可以帮助程序减少内存分配和垃圾回收的开销,从而提高程序的性能。下面是一道涉及逃逸分析的面试题及其详解。

王中阳Go4阅读 1.9k评论 1

封面图
架构设计-高性能篇
大家好,我是易安!今天我们谈一谈架构设计中的高性能架构涉及到的底层思想。本文分为缓存架构,单服务器高性能模型,集群下的高性能模型三个部分,内容很干,希望你仔细阅读。

架构狂人4阅读 743

简历上的项目,需要这样描述才有亮点!
每每准备面试,总有些小伙子甩出自己的豆包项目,不是Xxx管理系统,就是某某自动化平台。就像这几年自己的经历都放在 CRUD 编写上了,走的那是加班的道,干的都是体力的活。

小傅哥4阅读 1.1k

封面图
2.5k 声望
5.2k 粉丝
宣传栏