apache已公开合并计划,点击可阅读原文《Batch as a Special Case of Streaming and Alibaba's contribution of Blink》,由AI前线进行了翻译。
菜鸟的物流数据本身就有链路复杂、实操节点多、汇总维度多、考核逻辑复杂的特点,对于实时数据的计算存在很大挑战。经过仓配ETL团队的努力,目前仓配实时数据已覆盖了绝大多数场景,但是有这样一类特殊指标:“晚...
如<利用blink+MQ实现流计算中的延时统计问题>一文中所描述的场景,我们将其简化为以下案例:实时流的数据源结构如下:
表格存储(Table Store)是阿里云自研的NoSQL多模型数据库,提供PB级结构化数据存储、千万TPS以及毫秒级延迟的服务能力。在实时计算场景里,表格存储强大的写入能力和多模型的存储形态,使其不仅可以作为计算结果...
阿里妹导读:菜鸟供应链业务链路长、节点多、实体多,使得技术团队在建设供应链实时数仓的过程中,面临着诸多挑战,如:如何实现实时变Key统计?如何实现实时超时统计?如何进行有效地资源优化?如何提升多实时流...
交易数据的实时统计是电商网站一个核心功能,可以帮助用户实时统计网站的整体销售情况,快速验证“新销售策略”的效果。我们今天介绍一个基于表格存储(Tablestore)实现交易数据的实时计算,给大家提供一个新使用方式。
本文为 Apache Flink 新版本重大功能特性解读之 Flink SQL 系列文章的开篇,Flink SQL 系列文章由其核心贡献者们分享,涵盖基础知识、实践、调优、内部实现等各个方面,带你由浅入深地全面了解 Flink SQL。
阿里云官网内容平台!汇聚阿里云优质内容(入门...