找到约 3913 条结果
  • Pandas的crosstab函数
    我很喜欢DataCamp上的“Seaborn中间数据可视化”(Intermediate Data Visualization with Seaborn)这个课程。它教给新手非常棒的图表和方法。但说到热图,课程的老师不知怎么地引入了一个全新的pandas函数crosstab。然后,很快说:“crosstab是一个计算交叉表的有用函数…”
    2020-10-16
  • 万字详解AI开发中的数据预处理(清洗)
    编者按:在现实生活中,大多数数据都需要进行清洗和预处理,以便在使用数据时达到最佳效果。机器学习流程只能处理数字,因此需要找到一种方法将非数字特征转化为数字表示。本文还介绍了三种缺失值类型:完全缺失、随机缺失和非随机缺失,并教授如何使用Python来检测和处理缺失值。通过阅读本文,我相信你将了解什么是数...
    2023-03-27
  • boost/filesystem 简明说明
    <boost/filesystem/fstream.hpp> 和<fstream>接口类似,不同的是和路径有关的参数从string/const char*变成了path
    2016-01-22
  • ECON5570健康分析
    This assessment will be on the topic of immunization. It is an individualassessment comprising 45% of your final grade. The assessment has three partswhich requires you to write an essay and analyse and interpret two datasets usingdifferent methods of statistical analysis. It will cover materials...
    2023-02-02
  • DAT 500S – Machine Learning
    DAT 500S – Machine Learning - Project GuidelinesFinal Goal: Optimize the portfolio of (experimental) varieties to be grown at the target farm. Information about the target farm is available in the evaluation dataset. The optimal portfolio can have at most 5 varieties of soybean. It is not necessa...
    2022-03-05
  • 2021 HIMCM
    2021 HIMCMProblem B: Tackling the DroughtBackgroundLake Mead, a Colorado River reservoir on the Nevada-Arizona border, is the largest waterreservoir in the United States (Figure 1). In the summer of 2021, Lake Mead registered itslowest level on record since its initial filling in the 1930s. Droug...
    2021-11-11
  • CMPT 361 Computing
    Computing Science CMPT 361 Spring 2021Assignment #2 (12 marks)Written parts are exercises, no submission; solutions posted progressively over time.Programming part due: Friday, Apr. 16, 11:45 p.m. via electronic submission.Programming (12 marks): Shading and controlling a robotic armWrite a progr...
    2022-04-13
  • 拓端tecdat|R语言使用倾向评分提高RCT(随机对照试验)的效率
    首先要注意的是,人们不会认为倾向评分在RCT中起作用。如上所述,倾向评分用于调整观察性研究中的混淆。在RCT中,随机化确保治疗和其他基线变量在统计学上是独立的,即没有混淆。那么倾向得分有什么用呢?
    2020-03-23
  • FCC 成都社区·前端周刊 第 5 期
    D3 一直是 JavaScript 数据可视化的不错选择。本次发布的 5.0 版本的更新包括:使用 Promise 代替回调函数,等高线图和密度图。
    2018-04-01
  • 2019S1 QBUS6840
    2019S1 QBUS6840 Assignment 1 Page 1 of 5QBUS6840 Assignment 1 – Homework:Due dates: Friday 12 April 2019Value: 15%RationaleThis assignment has been designed to help students to develop basic predictive analyticsskills on synthetic and possible real applied problems, including data visualization, ...
    2021-07-08
  • MATH5885数据分析
    Due 23:59, Sunday, 31st July (end of Week 9) via Moodle.The project should be submitted via the Assignment tool. This tool is accessible via a clearlyindicated link in the Assessments subfolder on moodle.You are allowed to work in pairs (groups) oftwo if you wish. In that case, only one of the gr...
    2023-07-06
  • Rt<1啦,上海疫情流行趋势分析
    基本再生数R0是指在一个完全易感人群中,没有任何干预措施的情况下,一个被传染病病原体感染的个体所能引起的第二代感染病例数,常用于衡量病原体自身的传播力。(“流行病学专家解读| 传染病的有效再生数与基本再生数,” n.d.)
    2022-04-19
  • Evaluation Metrics
    Classification is about deciding which categories new instances belong to. For example we can organize objects based on whether they are square or round, or we might have data about different passengers on the Titanic like in project 0, and want to know whether or not each passenger survived. The...
    2017-02-10
  • 拓端tecdat|R语言stan泊松回归Poisson regression
    原文链接:[链接]读取数据 {代码...} {代码...} 普通 Poisson model {代码...} {代码...} Stan数据 {代码...} {代码...} {代码...} {代码...} {代码...} ​​比较 {代码...} {代码...} {代码...} {代码...} 非常感谢您阅读本文,有任何问题请在下方留言!
    2020-03-22
  • QBUS6840 分析解答
    2019S1 QBUS6840 Assignment 1 Page 1 of 5QBUS6840 Assignment 1 – Homework:Due dates: Friday 12 April 2019Value: 15%RationaleThis assignment has been designed to help students to develop basic predictive analyticsskills on synthetic and possible real applied problems, including data visualization, ...
    2021-07-01
  • ACCT 6142 with negative sales/assets
    Option 1: Coding based project-Backtesting a trading signal (number of students: 3-6)
    2025-02-25
  • 高基数类别特征预处理:平均数编码 | 京东云技术团队
    对于一个类别特征,如果这个特征的取值非常多,则称它为高基数(high-cardinality)类别特征。在深度学习场景中,对于类别特征我们一般采用Embedding的方式,通过预训练或直接训练的方式将类别特征值编码成向量。在经典机器学习场景中,对于有序类别特征,我们可以使用LabelEncoder进行编码处理,对于低基数无序类别特征...
    2023-08-30