头图

  • [1] Juan Y , Zhuang Y , Chin W S , et al. Field-aware Factorization Machines for CTR Prediction[C]// the 10th ACM Conference. ACM, 2016.
  • [2] He K , Zhang X , Ren S , et al. Identity Mappings in Deep Residual Networks[J]. Springer, Cham, 2016.
  • [3] Ali, Jehad & Khan, Rehanullah & Ahmad, Nasir & Maqsood, Imran. (2012). Random Forests and Decision Trees. International Journal of Computer Science Issues(IJCSI). 9.
  • [4] Robi Polikar. 2006. Ensemble based systems in decision making. IEEE Circuits and systems magazine 6, 3 (2006), 21–45.
  • [5] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. 2020. Bias and Debias in Recommender System: A Survey and Future Directions. arXiv preprint arXiv:2010.03240 (2020).
  • [6] H. Abdollahpouri and M. Mansoury, “Multi-sided exposure bias in recommendation,” arXiv preprint arXiv:2006.15772, 2020.
  • [7] Huang J, Hu K, Tang Q, et al. Deep Position-wise Interaction Network for CTR Prediction[J]. arXiv preprint arXiv:2106.05482, 2021.
  • [9] Luo Z, Huang J, Hu K, et al. AccuAir: Winning solution to air quality prediction for KDD Cup 2018[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 1842-1850.
  • [10] He Y, Lin J, Liu Z, et al. Amc: Automl for model compression and acceleration on mobile devices[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 784-800.
  • [11] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. 2020. Graph neural architecture search. In IJCAI, Vol. 20. 1403–1409.
  • [12] Matheus Nunes and Gisele L Pappa. 2020. Neural Architecture Search in Graph Neural Networks. In Brazilian Conference on Intelligent Systems. Springer, 302– 317.
  • [13] Huan Zhao, Lanning Wei, and Quanming Yao. 2020. Simplifying Architecture Search for Graph Neural Network. arXiv preprint arXiv:2008.11652 (2020).
  • [14] Jin Xu, Mingjian Chen, Jianqiang Huang, Xingyuan Tang, Ke Hu, Jian Li, Jia Cheng, Jun Lei: “AutoHEnsGNN: Winning Solution to AutoGraph Challenge for KDD Cup 2020”, 2021; arXiv:2111.12952.
  • [15] Selsaas L R, Agrawal B, Rong C, et al. AFFM: auto feature engineering in field-aware factorization machines for predictive analytics[C]//2015 IEEE International Conference on Data Mining Workshop (ICDMW). IEEE, 2015: 1705-1709.
  • [16] Yao Shu, Wei Wang, and Shaofeng Cai. 2019. Understanding Architectures Learnt by Cell-based Neural Architecture Search. In International Conference on Learning Representations.
  • [17] Kaicheng Yu, Rene Ranftl, and Mathieu Salzmann. 2020. How to Train Your Super-Net: An Analysis of Training Heuristics in Weight-Sharing NAS. arXiv preprint arXiv:2003.04276 (2020).
  • [18] Haixun Wang, Wei Fan, Philip S Yu, and Jiawei Han. 2003. Mining concept-drifting data streams using ensemble classifiers. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. 226–235.
  • [19] Robi Polikar. 2006. Ensemble based systems in decision making. IEEE Circuits and systems magazine 6, 3 (2006), 21–45.
  • [20] Chengshuai Zhao, Yang Qiu, Shuang Zhou, Shichao Liu, Wen Zhang, and Yanqing Niu. 2020. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction. BMC genomics 21, 13 (2020), 1–12.
  • [21] Rosenfeld N , Meshi O , Tarlow D , et al. Learning Structured Models with the AUC Loss and Its Generalizations.
  • [22] Chen T , Tong H , Benesty M . xgboost: Extreme Gradient Boosting[J]. 2016.
  • [23] Qi, Yi, et al. "Trilateral Spatiotemporal Attention Network for User Behavior Modeling in Location-based Search", CIKM 2021.
  • [25] Geurts P . Bias vs Variance Decomposition for Regression and Classification[J]. Springer US, 2005


美团技术团队
8.6k 声望17.6k 粉丝