is Stream ? Stream set of elements to be processed as a kind of flow. In the process of flow, use Stream API to operate the elements in the flow, such as: filtering, sorting, aggregation, etc.

Stream can be created from an array or a collection. There are two types of operations on streams:

  1. Intermediate operations, each time a new stream is returned, there can be multiple.
  2. Terminal operation, each stream can only perform one terminal operation, and the stream cannot be used again after the terminal operation. Terminal operations result in a new set or value.

In addition, Stream has several features:

  1. Stream does not store data, but calculates data according to specific rules, and generally outputs the result.
  2. stream does not change the data source, usually produces a new collection or a value.
  3. Stream has a delayed execution feature, and intermediate operations will only be executed when the terminal operation is called.

Stream can be created from an array of collections.

1. Create a stream with a collection through the java.util.Collection.stream()

List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();

2. Use the java.util.Arrays.stream(T[] array) method to create a stream with an array

int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);

3, using Stream static methods: of()、iterate()、generate()

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);

Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println);

Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);

Output result:

0 3 6 9
0.4626673076243447
0.9061170024636954
0.4901337233769709

A simple distinction between stream and parallelStream stream is a sequential stream, and the main thread performs operations on the stream in sequence, while parallelStream stream in a multi-threaded parallel execution manner, but only if the data processing in the stream is not order requirements.

Parallel streams can speed up processing if the amount of data in the stream is large enough. In addition to creating parallel streams directly, you can also convert sequential streams to parallel streams parallel()

Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();

Before using stream, first understand a concept: Optional .

Optional class is a container object that null If the value exists, the isPresent() method will return true , and calling the get() method will return the object.

This is the employee class used in the latter case:

List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));

class Person {
  private String name; // 姓名
  private int salary; // 薪资
  private int age; // 年龄
  private String sex; //性别
  private String area; // 地区

  // 构造方法
  public Person(String name, int salary, int age,String sex,String area) {
    this.name = name;
    this.salary = salary;
    this.age = age;
    this.sex = sex;
    this.area = area;
  }
  // 省略了get和set,请自行添加

}

2.1 Foreach/find/match

Stream also supports similar traversal and match elements of the collection, but Stream the elements are Optional existing types. The traversal and matching of Stream

// import已省略,请自行添加,后面代码亦是

public class StreamTest {
  public static void main(String[] args) {
        List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

        // 遍历输出符合条件的元素
        list.stream().filter(x -> x > 6).forEach(System.out::println);
        // 匹配第一个
        Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
        // 匹配任意(适用于并行流)
        Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
        // 是否包含符合特定条件的元素
        boolean anyMatch = list.stream().anyMatch(x -> x < 6);
        System.out.println("匹配第一个值:" + findFirst.get());
        System.out.println("匹配任意一个值:" + findAny.get());
        System.out.println("是否存在大于6的值:" + anyMatch);
    }
}

2.2 Filter

Filtering is the operation of checking elements in a stream according to certain rules and extracting qualified elements into a new stream.

Case 1: Filter out the elements greater than 7 in Integer

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
    Stream<Integer> stream = list.stream();
    stream.filter(x -> x > 7).forEach(System.out::println);
  }
}

expected results:

8 9

Case 2: Screen the employees whose salary is higher than 8000 and form a new set. forms a new collection depending on collect (collection), which will be described in detail later.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
        .collect(Collectors.toList());
    System.out.print("高于8000的员工姓名:" + fiterList);
  }
}

operation result:

Employee names above 8000: [Tom, Anni, Owen]

2.3 Aggregation (max/min/count)

max , min , count , yes, we often use them for data statistics in mysql. These concepts and usages are also introduced in Java stream, which greatly facilitates our statistical work on collections and arrays.

Case 1: Get the longest element in the String

public class StreamTest {
  public static void main(String[] args) {
    List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");

    Optional<String> max = list.stream().max(Comparator.comparing(String::length));
    System.out.println("最长的字符串:" + max.get());
  }
}

Output result:

Longest string: weoujgsd

Case 2: Get the maximum value in the Integer

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);

    // 自然排序
    Optional<Integer> max = list.stream().max(Integer::compareTo);
    // 自定义排序
    Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
      @Override
      public int compare(Integer o1, Integer o2) {
        return o1.compareTo(o2);
      }
    });
    System.out.println("自然排序的最大值:" + max.get());
    System.out.println("自定义排序的最大值:" + max2.get());
  }
}

Output result:

Maximum value of natural sort: 11
Maximum value for custom sort: 11

Case 3: Get the person with the highest salary of the employee.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
    System.out.println("员工工资最大值:" + max.get().getSalary());
  }
}

Output result:

Maximum employee salary: 9500

Case 4: Calculate the number of elements greater than 6 in the Integer

import java.util.Arrays;
import java.util.List;

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

    long count = list.stream().filter(x -> x > 6).count();
    System.out.println("list中大于6的元素个数:" + count);
  }
}

Output result:

Number of elements in list greater than 6: 4

2.4 Map (map/flatMap)

Mapping, which can map elements of one stream to another stream according to certain mapping rules. Divided into map and flatMap :

  • map : Receives a function as a parameter, which is applied to each element and maps it to a new element.
  • flatMap : Takes a function as a parameter, replaces each value in the stream with another stream, and concatenates all the streams into a single stream.

img

img

Case 1: All elements of the English string array are changed to uppercase. +3 for each element of an integer array.

public class StreamTest {
  public static void main(String[] args) {
    String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
    List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

    List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
    List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

    System.out.println("每个元素大写:" + strList);
    System.out.println("每个元素+3:" + intListNew);
  }
}

Output result:

Capitalize each element: [ABCD, BCDD, DEFDE, FTR]
+3 per element: [4, 6, 8, 10, 12, 14]

Case 2: Increase the salary of all employees by 1000.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    // 不改变原来员工集合的方式
    List<Person> personListNew = personList.stream().map(person -> {
      Person personNew = new Person(person.getName(), 0, 0, null, null);
      personNew.setSalary(person.getSalary() + 10000);
      return personNew;
    }).collect(Collectors.toList());
    System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
    System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());

    // 改变原来员工集合的方式
    List<Person> personListNew2 = personList.stream().map(person -> {
      person.setSalary(person.getSalary() + 10000);
      return person;
    }).collect(Collectors.toList());
    System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
    System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
  }
}

Output result:

Before a change: Tom–>8900
After one change: Tom–>18900
Before the second change: Tom–>18900
After the second change: Tom–>18900

Case 3: Merge two character arrays into a new character array.

public class StreamTest {
  public static void main(String[] args) {
    List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
    List<String> listNew = list.stream().flatMap(s -> {
      // 将每个元素转换成一个stream
      String[] split = s.split(",");
      Stream<String> s2 = Arrays.stream(split);
      return s2;
    }).collect(Collectors.toList());

    System.out.println("处理前的集合:" + list);
    System.out.println("处理后的集合:" + listNew);
  }
}

Output result:

Collection before processing: [mkla, 1-3-5]
Processed set: [m, k, l, a, 1, 3, 5]

2.5

Reduction, also known as reduction, as the name implies, is to reduce a stream to a value, which can realize the operation of summing, multiplying, and maximizing a set.

Case 1: Find the sum, product and maximum value of the elements of the Integer

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
    // 求和方式1
    Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
    // 求和方式2
    Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
    // 求和方式3
    Integer sum3 = list.stream().reduce(0, Integer::sum);
    
    // 求乘积
    Optional<Integer> product = list.stream().reduce((x, y) -> x * y);

    // 求最大值方式1
    Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
    // 求最大值写法2
    Integer max2 = list.stream().reduce(1, Integer::max);

    System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
    System.out.println("list求积:" + product.get());
    System.out.println("list求和:" + max.get() + "," + max2);
  }
}

Output result:

list summation: 29,29,29
List product: 2112
list sum: 11,11

Case 2: Find the sum and maximum salary of all employees.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    personList.add(new Person("Owen", 9500, 25, "male", "New York"));
    personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

    // 求工资之和方式1:
    Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
    // 求工资之和方式2:
    Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
        (sum1, sum2) -> sum1 + sum2);
    // 求工资之和方式3:
    Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);

    // 求最高工资方式1:
    Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        Integer::max);
    // 求最高工资方式2:
    Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
        (max1, max2) -> max1 > max2 ? max1 : max2);

    System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
    System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
  }
}

Output result:

Sum of wages: 49300, 49300, 49300
Maximum salary: 9500, 9500

2.6 collect

collect , collection, can be said to be the part with the most content and richest functions. Literally, it is to collect a stream, which can eventually be collected into a value or a new collection.

collect mainly relies on the built-in static methods of the java.util.stream.Collectors

2.6.1 Collection (toList/toSet/toMap)

Because the stream does not store data, after the data in the stream is processed, the data in the stream needs to be re-collected into a new collection. toList , toSet and toMap more commonly used, and there are more complex toConcurrentMap toCollection and 061ed7b89ec849. The following example demonstrates toList , toSet and toMap :

public class StreamTest {
  public static void main(String[] args) {
    List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
    List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
    Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
    personList.add(new Person("Anni", 8200, 24, "female", "New York"));
    
    Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
        .collect(Collectors.toMap(Person::getName, p -> p));
    System.out.println("toList:" + listNew);
    System.out.println("toSet:" + set);
    System.out.println("toMap:" + map);
  }
}

operation result:

toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}

2.6.2 Statistics (count/averaging)

Collectors provides a series of static methods for statistics:

  • Count: count
  • Average: averagingInt , averagingLong , averagingDouble
  • Maximum value: maxBy , minBy
  • Summation: summingInt , summingLong , summingDouble
  • summarizingInt all of the above: 061ed7b89ec9a5 , summarizingLong , summarizingDouble

Case: Statistics on the number of employees, average salary, total salary, and maximum salary.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    // 求总数
    Long count = personList.stream().collect(Collectors.counting());
    // 求平均工资
    Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
    // 求最高工资
    Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
    // 求工资之和
    Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
    // 一次性统计所有信息
    DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

    System.out.println("员工总数:" + count);
    System.out.println("员工平均工资:" + average);
    System.out.println("员工工资总和:" + sum);
    System.out.println("员工工资所有统计:" + collect);
  }
}

operation result:

Total number of employees: 3
Average salary of employees: 7900.0
Total employee salary: 23700
All employee salary statistics: DoubleSummaryStatistics{count=3, sum=23700.000000, min=7000.000000, average=7900.000000, max=8900.000000}

2.6.3 Grouping (partitioningBy/groupingBy)

  • Zoning: The stream conditionally divided into two Map , such as employee salaries is higher than 8000 by divided into two parts.
  • Grouping: Divide the collection into multiple Maps, such as grouping employees by gender. There are single-level grouping and multi-level grouping.

img

Case: Divide employees into two parts based on whether their salary is higher than 8000; group employees by gender and region

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, "male", "New York"));
    personList.add(new Person("Jack", 7000, "male", "Washington"));
    personList.add(new Person("Lily", 7800, "female", "Washington"));
    personList.add(new Person("Anni", 8200, "female", "New York"));
    personList.add(new Person("Owen", 9500, "male", "New York"));
    personList.add(new Person("Alisa", 7900, "female", "New York"));

    // 将员工按薪资是否高于8000分组
        Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
        // 将员工按性别分组
        Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
        // 将员工先按性别分组,再按地区分组
        Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
        System.out.println("员工按薪资是否大于8000分组情况:" + part);
        System.out.println("员工按性别分组情况:" + group);
        System.out.println("员工按性别、地区:" + group2);
  }
}

Output result:

员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}

2.6.4 Joining

joining can concatenate elements in a stream into a string with a specific concatenator (or direct concatenation if none).

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
    System.out.println("所有员工的姓名:" + names);
    List<String> list = Arrays.asList("A", "B", "C");
    String string = list.stream().collect(Collectors.joining("-"));
    System.out.println("拼接后的字符串:" + string);
  }
}

operation result:

All staff names: Tom, Jack, Lily
Concatenated string: ABC

2.6.5

Collectors reducing method of stream itself, the reduce method provided by the 061ed7b89ecc03 class adds support for custom reduction.

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();
    personList.add(new Person("Tom", 8900, 23, "male", "New York"));
    personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

    // 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
    Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
    System.out.println("员工扣税薪资总和:" + sum);

    // stream的reduce
    Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
    System.out.println("员工薪资总和:" + sum2.get());
  }
}

operation result:

Total employee tax deduction salary: 8700
Total employee salary: 23700

2.7 Sorted

sorted, intermediate operation. There are two sorts:

  • sorted(): natural sorting, elements in the stream need to implement the Comparable interface
  • sorted(Comparator com): Comparator sorter custom sorting

Case: Sort employees by salary from high to low (the same salary, from

public class StreamTest {
  public static void main(String[] args) {
    List<Person> personList = new ArrayList<Person>();

    personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
    personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
    personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
    personList.add(new Person("Lily", 8800, 26, "male", "New York"));
    personList.add(new Person("Alisa", 9000, 26, "female", "New York"));

    // 按工资升序排序(自然排序)
    List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
        .collect(Collectors.toList());
    // 按工资倒序排序
    List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
        .map(Person::getName).collect(Collectors.toList());
    // 先按工资再按年龄升序排序
    List<String> newList3 = personList.stream()
        .sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
        .collect(Collectors.toList());
    // 先按工资再按年龄自定义排序(降序)
    List<String> newList4 = personList.stream().sorted((p1, p2) -> {
      if (p1.getSalary() == p2.getSalary()) {
        return p2.getAge() - p1.getAge();
      } else {
        return p2.getSalary() - p1.getSalary();
      }
    }).map(Person::getName).collect(Collectors.toList());

    System.out.println("按工资升序排序:" + newList);
    System.out.println("按工资降序排序:" + newList2);
    System.out.println("先按工资再按年龄升序排序:" + newList3);
    System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
  }
}

operation result:

Sort by salary in ascending order: [Lily, Tom, Sherry, Jack, Alisa]
Sort by salary in descending order: [Sherry, Jack, Alisa, Tom, Lily]
Sort by salary first and then by age in ascending order: [Lily, Tom, Sherry, Jack, Alisa]
Sort by salary and then by age in descending order: [Alisa, Jack, Sherry, Tom, Lily]

2.8 Extract/combine

Streams can also be merged, deduplicated, limited, skipped, etc.

img

img

img

public class StreamTest {
  public static void main(String[] args) {
    String[] arr1 = { "a", "b", "c", "d" };
    String[] arr2 = { "d", "e", "f", "g" };

    Stream<String> stream1 = Stream.of(arr1);
    Stream<String> stream2 = Stream.of(arr2);
    // concat:合并两个流 distinct:去重
    List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
    // limit:限制从流中获得前n个数据
    List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
    // skip:跳过前n个数据
    List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

    System.out.println("流合并:" + newList);
    System.out.println("limit:" + collect);
    System.out.println("skip:" + collect2);
  }
}

operation result:

Stream merge: [a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11]

Article source: https://blog.csdn.net/mu_wind/article/details

Seeing here today's sharing is over. If you think this article is not bad, come to share, like, and watch three times, so that more people can see it~

Welcome to pay attention to the personal public "JavaClub" , and regularly share some technical dry goods for you.


阿福研习社
57 声望43 粉丝