整理:CV君包含光学、人脸、分割、视觉问答、语音处理、缺陷检测等领域。光学##CVPR20211、Shape and Material Capture at Home马里兰大学&华盛顿大学已开源:[链接]论文:[链接]主页:[链接]CVPR20212、Global Transport for Fluid Reconstruction with Learned Self-Supervision慕尼黑工业大学&苏黎世联邦理工...
本文分享一篇 52CV 粉丝的论文『3D Human Pose Estimation with Spatial and Temporal Transformers』。文中提出首个纯粹基于Transformer 的架构,在不涉及卷积的情况下在视频中实现3D人体姿态估计。算法在Human3.6M和MPI-INF-3DHP数据集上均达到SOTA performance,并在 in the wild 视频中有着不错的表现。
分享一篇新出的论文 End-to-end Lane Shape Prediction with Transformers,该文为车道线检测问题建立参数模型,使用Transformer捕获道路中细长车道线特征和全局特征,所发明的车道线检测算法与以往相比,可端到端训练、参数量更少、速度更快(高达420 fps,单1080Ti)。
图像去噪是计算机视觉领域的传统方向,对于可见光图像、视频、核磁图像等的处理仍应用广泛,在工业和学术界引起很多人的关注,基于BM3D(block-matching 3D ,2007)框架的系列算法是该领域的著名方法,其结合图像非局部相似的属性和变换域的稀疏表示,在深度学习用于CV各领域的今天仍有用武之地。