本文简要介绍了论文“ Marior: Margin Removal and Iterative Content Rectification for Document Dewarping in the Wild ”的相关工作。照相机捕捉到的文档图像通常会出现透视和几何变形。考虑到视觉美感较差和OCR系统性能下降,对其进行纠正具有重要的价值。最近的基于学习的方法集中关注于精确裁剪的文档图像。然而,...
2017年华中科技大学在发表的论文《An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition》提出了一个识别文本的方法,这种方法就是CRNN。该模型主要用于解决基于图像的序列识别问题,特别是场景文本识别问题。
CTPN,全称是“Detecting Text in Natural Image with Connectionist Text Proposal Network”(基于连接预选框网络的文本检测)。CTPN直接在卷积特征映射中检测一系列精细比例的文本建议中的文本行。CTPN开发了一个垂直锚定机制,可以联合预测每个固定宽度提案的位置和文本/非文本得分,大大提高了定位精度。序列建议由递...
论文《 Survey on Deep Learning for Named Entity Recognition》总结了NER技术面临的挑战和未来发展方向。随着建模语言的进步和实际应用的需求,NER会得到研究人员更多的关注。另一方面,NER通常被视为下游应用程序的预处理组件。这意味着特定的NER任务由下游应用程序的需求定义,例如,命名实体的类型以及是否需要检测...