前面已经准备好了greenlet对应的Java版本了,一个删减后的kilim(http://segmentfault.com/blog/taowen/1190000000697487)。接下来,就看怎么用协程来实现异步io了。首先,拿一段最最简单的tcp socket accept的代码:
Selector selector = Selector.open();
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.socket().bind(new InetSocketAddress(9090));
serverSocketChannel.configureBlocking(false);
serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT);
System.out.println("listening...");
selector.select();
scheduler.accept(serverSocketChannel);
System.out.println("hello");
这里使用的是java 6的NIO1的selector模型。直接拿NIO的原始api写代码会死人的。引入协程就是为了把上下连续的业务逻辑放在一个协程里,把与业务关系不大的selector的处理部分放到框架的ioloop里。也就是把一段交织的代码,分成两个关注点不同的组成部分。
改造之后的代码在这里: https://github.com/taowen/daili/tree/1e319f929678213a8d8f63ee5e8b8cf016637317
这是改造之后的效果:
Scheduler scheduler = new Scheduler();
DailiTask task = new DailiTask(scheduler) {
@Override
public void execute() throws Pausable, Exception {
ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
serverSocketChannel.socket().bind(new InetSocketAddress(9090));
serverSocketChannel.configureBlocking(false);
System.out.println("listening...");
scheduler.accept(serverSocketChannel);
System.out.println("hello");
}
};
scheduler.callSoon(task);
scheduler.loop();
其中最关键的一行是 scheduler.accept(serverSocketChannel); 这个调用是阻塞的。但是只阻塞调用它的Task协程。如果有多个Task并行的话,别的Task可以在这个时候被运行。那么scheduler.accept是如何做到把NIO的selector api转换成这样的形式的呢?
public SocketChannel accept(ServerSocketChannel serverSocketChannel) throws IOException, Pausable {
SocketChannel socketChannel = serverSocketChannel.accept();
if (null != socketChannel) {
return socketChannel;
}
SelectionKey selectionKey = serverSocketChannel.keyFor(selector);
if (null == selectionKey) {
selectionKey = serverSocketChannel.register(selector, SelectionKey.OP_ACCEPT, new WaitingSelectorIO());
} else {
selectionKey.interestOps(selectionKey.interestOps() | SelectionKey.OP_ACCEPT);
}
WaitingSelectorIO waitingSelectorIO = (WaitingSelectorIO) selectionKey.attachment();
waitingSelectorIO.acceptBlockedAt = System.currentTimeMillis();
waitingSelectorIO.acceptTask = (Task) Task.getCurrentTask();
selectionKey.attach(waitingSelectorIO);
Task.pause(waitingSelectorIO);
return serverSocketChannel.accept();
}
这个函数分成四部分:第一部分是尝试去accept,如果有戏就不用NIO了。第二部分是注册selection key,说明我希望知道什么时候可以accept了,并把task作为附件加上去。第三部分是Task.pause放弃掉执行权。第四部分是task被回调了,说明等待的accept已经ok了,可以去调用了。
但是Task.pause了之后,是谁在把这个暂停的task重新拉起来执行的呢?这个就是scheduler的loop干的活了
public void loop() throws IOException {
while (true) {
executeReadyTasks();
selector.select();
Set<SelectionKey> selectionKeys = selector.selectedKeys();
for (SelectionKey selectionKey : selectionKeys) {
WaitingSelectorIO waitingSelectorIO = (WaitingSelectorIO) selectionKey.attachment();
if (selectionKey.isAcceptable()) {
Task taskToCall = waitingSelectorIO.acceptTask;
waitingSelectorIO.acceptBlockedAt = 0;
waitingSelectorIO.acceptTask = null;
callSoon(taskToCall);
}
}
}
}
在循环中调用selector.select获得网络事件的通知。如果selection key就绪了,就把附件里的task取出来回调。具体的回调发生在executeReadyTasks内部,其实就是调用一下resume而已。
private void executeReadyTasks() {
Task task;
while((task = readyTasks.poll()) != null) {
executeTask(task);
}
}
private void executeTask(Task task) {
try {
task.resume();
} catch (Exception e) {
LOGGER.error("failed to execute task: " + task, e);
}
}
这样一个只能接收telnet 127.0.0.1 9090打印一行hello的异步io应用就写好了。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。