Backgroud
整理收集关于深度神经网络的相关项目资料,方便自己学习,持续更新。
Course Resource
-
Neural Networks for Machine Learning
https://class.coursera.org/neuralnets-2012-001
---Geoffrey Hinton
AMA Geoffrey Hinton, 07 Nov 2014 -
Neural networks class - Université de Sherbrooke
https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH (Youtube.com)
http://v.youku.com/v_show/id_XNzEyMDYxMTc2.html?f=22795577 (优酷)
---Hugo Larochelle -
UFLDL( Unsupervised Feature Learning and Deep Learning) Tutorial
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
Material contributed by: Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen
Project Resource
-
cuda-convnet
High-performance C++/CUDA implementation of convolutional neuralnetworks
https://code.google.com/p/cuda-convnet/
--- Alex Krizhevsky -
Torch7
Torch7 is a scientific computing framework with wide support for
machine learning algorithms. It is easy to use and provides a very
efficient implementation, thanks to an easy and fast scripting
language, LuaJIT, and an underlying C implementation.
http://torch.ch/ -
Pylearn2
Pylearn2 is a machine learning library. Most of its functionality is
built on top of Theano. This means you can write Pylearn2 plugins (new
models, algorithms, etc) using mathematical expressions, and Theano
will optimize and stabilize those expressions for you, and compile
them to a backend of your choice (CPU or GPU).
http://deeplearning.net/software/pylearn2/index.html
Book Resource
-
Deep Learning Tutorials
> http://www.deeplearning.net/tutorial/
> http://www.iro.umontreal.ca/~bengioy/dlbook/
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。