Backgroud

整理收集关于深度神经网络的相关项目资料,方便自己学习,持续更新。

Course Resource

  1. Neural Networks for Machine Learning

    https://class.coursera.org/neuralnets-2012-001
    ---Geoffrey Hinton
    AMA Geoffrey Hinton, 07 Nov 2014

  2. Neural networks class - Université de Sherbrooke

    https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH (Youtube.com)
    http://v.youku.com/v_show/id_XNzEyMDYxMTc2.html?f=22795577 (优酷)
    ---Hugo Larochelle

  3. UFLDL( Unsupervised Feature Learning and Deep Learning) Tutorial

    http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
    Material contributed by: Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen

Project Resource

  1. cuda-convnet

    High-performance C++/CUDA implementation of convolutional neuralnetworks
    https://code.google.com/p/cuda-convnet/
    --- Alex Krizhevsky

  2. Torch7

    Torch7 is a scientific computing framework with wide support for
    machine learning algorithms. It is easy to use and provides a very
    efficient implementation, thanks to an easy and fast scripting
    language, LuaJIT, and an underlying C implementation.
    http://torch.ch/

  3. Pylearn2

    Pylearn2 is a machine learning library. Most of its functionality is
    built on top of Theano. This means you can write Pylearn2 plugins (new
    models, algorithms, etc) using mathematical expressions, and Theano
    will optimize and stabilize those expressions for you, and compile
    them to a backend of your choice (CPU or GPU).
    http://deeplearning.net/software/pylearn2/index.html

Book Resource

  1. Deep Learning Tutorials
    > http://www.deeplearning.net/tutorial/
    > http://www.iro.umontreal.ca/~bengioy/dlbook/

BloodD
15 声望0 粉丝

天地山水,胸怀万物,持之以恒,不懈努力


引用和评论

0 条评论