2Sum
在分析多数和之前,请先看Two Sum的详解
3Sum
请参阅:https://yanjia.me/zh/2019/01/...
双指针法
复杂度
时间 O(N^2) 空间 O(1)
思路
3Sum其实可以转化成一个2Sum的题,我们先从数组中选一个数,并将目标数减去这个数,得到一个新目标数。然后再在剩下的数中找一对和是这个新目标数的数,其实就转化为2Sum了。为了避免得到重复结果,我们不仅要跳过重复元素,而且要保证2Sum找的范围要是在我们最先选定的那个数之后的。
代码
public class Solution {
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
ArrayList<List<Integer>> res = new ArrayList<List<Integer>>();
for(int i = 0; i < nums.length - 2; i++){
// 跳过重复元素
if(i > 0 && nums[i] == nums[i-1]) continue;
// 计算2Sum
ArrayList<List<Integer>> curr = twoSum(nums, i, 0 - nums[i]);
res.addAll(curr);
}
return res;
}
private ArrayList<List<Integer>> twoSum(int[] nums, int i, int target){
int left = i + 1, right = nums.length - 1;
ArrayList<List<Integer>> res = new ArrayList<List<Integer>>();
while(left < right){
if(nums[left] + nums[right] == target){
ArrayList<Integer> curr = new ArrayList<Integer>();
curr.add(nums[i]);
curr.add(nums[left]);
curr.add(nums[right]);
res.add(curr);
do {
left++;
}while(left < nums.length && nums[left] == nums[left-1]);
do {
right--;
} while(right >= 0 && nums[right] == nums[right+1]);
} else if (nums[left] + nums[right] > target){
right--;
} else {
left++;
}
}
return res;
}
}
2019/01
Go
func threeSum(nums []int) [][]int {
// sort the slice to avoid duplicate and also use two pointers
sort.Slice(nums, func(i, j int) bool {
return nums[i] < nums[j]
})
res := [][]int{}
for i := 0; i < len(nums); i++ {
// skip duplicate numbers
if i != 0 && nums[i] == nums[i - 1] {
continue
}
// convert into a twoSum problem
res = twoSum(nums, i + 1, nums[i], res)
}
return res
}
func twoSum(nums []int, start, first int, res [][]int) [][]int {
left := start
right := len(nums) - 1
for left < right {
sum := nums[left] + nums[right]
if sum == 0 - first {
res = append(res, []int{first, nums[left], nums[right]})
left++
right--
// skip duplicate numbers from left side
for left < len(nums) && left > 0 && nums[left] == nums[left - 1] {
left++
}
// skip duplicate numbers from right side
for right >= 0 && right < len(nums) - 1 && nums[right] == nums[right + 1] {
right--
}
} else if sum > 0 - first {
right--
} else if sum < 0 - first {
left++
}
}
return res
}
4Sum
双指针法
复杂度
时间 O(N^3) 空间 O(1)
思路
和3Sum的思路一样,在计算4Sum时我们可以先选一个数,然后在剩下的数中计算3Sum。而计算3Sum则同样是先选一个数,然后再剩下的数中计算2Sum。
代码
public class Solution {
public List<List<Integer>> fourSum(int[] nums, int target) {
Arrays.sort(nums);
ArrayList<List<Integer>> res = new ArrayList<List<Integer>>();
for(int i = 0; i < nums.length - 3; i++){
if(i > 0 && nums[i] == nums[i-1]) continue;
List<List<Integer>> curr = threeSum(nums, i, target - nums[i]);
res.addAll(curr);
}
return res;
}
private List<List<Integer>> threeSum(int[] nums, int i, int target) {
ArrayList<List<Integer>> res = new ArrayList<List<Integer>>();
for(int j = i + 1; j < nums.length - 2; j++){
if(j > i + 1 && nums[j] == nums[j-1]) continue;
List<List<Integer>> curr = twoSum(nums, i, j, target - nums[j]);
res.addAll(curr);
}
return res;
}
private ArrayList<List<Integer>> twoSum(int[] nums, int i, int j, int target){
int left = j + 1, right = nums.length - 1;
ArrayList<List<Integer>> res = new ArrayList<List<Integer>>();
while(left < right){
if(nums[left] + nums[right] == target){
ArrayList<Integer> curr = new ArrayList<Integer>();
curr.add(nums[i]);
curr.add(nums[j]);
curr.add(nums[left]);
curr.add(nums[right]);
res.add(curr);
do {
left++;
}while(left < nums.length && nums[left] == nums[left-1]);
do {
right--;
} while(right >= 0 && nums[right] == nums[right+1]);
} else if (nums[left] + nums[right] > target){
right--;
} else {
left++;
}
}
return res;
}
}
3Sum Closet
Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.For example, given array S = {-1 2 1 -4}, and target = 1.
The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
双指针法
复杂度
时间 O(N^2) 空间 O(1)
思路
和3Sum的解法一样。在3Sum中,我们只有找到和目标完全一样的时候才返回,但在Closet中,我们要记录一个最小的差值,并同时记录下这个最小差值所对应的和。
代码
public class Solution {
public int threeSumClosest(int[] nums, int target) {
Arrays.sort(nums);
int closetSum = 0, minDiff = Integer.MAX_VALUE / 2;
for(int i = 0; i < nums.length; i++){
int left = i + 1, right = nums.length - 1;
while(left < right){
// 当前组合的和
int sum = nums[i] + nums[left] + nums[right];
// 当前组合的和与目标的差值
int diff = Math.abs(sum - target);
// 如果差值更小则更新最接近的和
if(diff < minDiff){
closetSum = sum;
minDiff = diff;
}
// 双指针的移动方法和3Sum一样
if (sum < target){
left++;
} else if (sum > target){
right--;
} else {
return sum;
}
}
}
return closetSum;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。