2

引言

Druid 是一个快速,近实时的查询海量只读数据的系统。Druid 的目标是可用性要达到100%,即使在部署新代码,或者某些节点 down 机的情况下。

Druid 目前支持的单表查询方式和 Dremel,PowerDrill 比较相似。它的主要特性如下:

1.支持嵌套数据的列式存储
2.层级查询
3.二级索引
4.实时数据抽取
5.分布式容错架构

同 PowerDrill 和 Dremel 相比,从功能的角度来说,Druid 几乎实现了 Dremel 提供的所有功能,并且参考了 PowerDrill 的数据存储和压缩方法。

Druid非常适合需要实时从一个数据流中摄取大量数据的产品。特别的,如果您希望零宕机,并且您的数据是时间序列数据,就再适合不过了。如何您更需要查询的灵活性和原始数据,那 Druid 就不是一个很好地选择。

架构
Druid 是由一系列不同角色的组件组成的系统。不同的组件如下:

历史节点(Historical Node):

该节点负责存储数据和查询。历史节点从深度存储中下载数据分片(segment),并且响应来自查询节点的查询。历史节点会定期刷新本身存贮的 数据分片信息到 zookeeper,并且通过 zookeeper得到需要加载或者卸载哪些数据分片。

实时节点(Realtime Node):

实时节点负责摄取实时数据。它们负责监听一个数据流,并把数据发到 Druid 系统当中。实时节点也接受来自查询节点的查询,并把结果返回。实时节点会把历史数据写到深度存储中。实时节点会查询 zookeeper,并确认当前存储在实时节点的数据分片是否已经上传至历史节点。如果已经上传,实时节点将删除该数据分片。

协调节点(coordinator node):

协调节点会监控所有的历史节点,确保所有数据是可用的,多副本的。协调节点会从存储 meta data 数据源中读取 meta data 信息,去决定哪些数据分片应该在 druid 集群当中。协调节点用 zookeeper 发现哪些历史节点存在,并且通过 zookeeper 去通知历史节点装载和卸载相应的数据分片。

查询节点(broker node):

查询节点接受从客户端来的查询,并转发这些查询到实时节点和历史节点。查询节点得到分别来自实时节点和历史节点的数据后,对这些数据进行合并,然后返回给客户端。查询节点也是利用zookeeper 去发现实时和历史节点的存在。

这种节点划分方式使得不同节点只需要处理好自己擅长的事情。

下面是在这个架构下地数据流图:
Druid 简介

下面这张图,显示的是 Druid 集群是如何运作管理的,显示了节点之间是如何通过 meta data 进行协调运作的
Druid 简介

(未完待续)


OneAPM Mobile Insight 以真实用户体验为度量标准进行 Crash 分析,监控网络请求及网络错误,提升用户留存。访问 OneAPM 官方网站感受更多应用性能优化体验,想阅读更多技术文章,请访问 OneAPM 官方技术博客


OneAPM蓝海讯通
11.4k 声望510 粉丝

Software makes the world run. OneAPM makes the software run.