Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
动态规划
思路
自底向上求解,
state:dp[i][j] 表示自底向上到第i行第j个数的最小路径
initial: dp[n - 1][i] = triangle最后一个数组的值
function:dp[i][j] = Math.min(dp[i+1][j], dp[i+1][j+1]) + triangle.get(i).get(j) 最小值由当前点的值加上下一行相邻两个路径值最小的路径
return: dp[0][0]
复杂度
时间O(n^2) 空间O(n^2)
代码
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0) {
return 0;
}
int n = triangle.size();
int[][] dp = new int[n][n];
for (int i = 0; i < n; i++) {
dp[n - 1][i] = triangle.get(n - 1).get(i);
}
for (int i = n - 2; i>= 0; i--) {
for (int j = 0; j <= i; j++) {
dp[i][j] = Math.min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle.get(i).get(j);
}
}
return dp[0][0];
}
一维动态规划
思路
维护一个长度为n的数组, 每次只更新当前数组
复杂度
时间O(n^2) 空间O(n)
代码
public int minimumTotal(List<List<Integer>> triangle) {
if (triangle == null || triangle.size() == 0) {
return 0;
}
int n = triangle.size();
int[]dp = new int[n];
for (int i = 0; i < n; i++) {
dp[i] = triangle.get(n - 1).get(i);
}
for (int i = n - 2; i>= 0; i--) {
for (int j = 0; j <= i; j++) {
dp[j] = Math.min(dp[j], dp[j + 1]) + triangle.get(i).get(j);
}
}
return dp[0];
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。