当我们说数据挖掘的时候我们在说什么

开头下定语:统计学习

现在市面上谈论到的数据挖掘基本上都是基于统计学习的监督学习或非监督学习问题。尤其以监督学习应用面更广。

统计学习的应用

分类问题:客户分类模型、异常鉴别、图像识别等
标注问题:信息抽取、自然语言处理等
标注问题:信息抽取、自然语言处理等

统计学习的一般流程

  • 得到一个有限的数据集合

  • 确定所有的学习模型集合

  • 确定模型选择的准则,就是学习的策略

  • 实现求解最优模型的算法并通过学习方法选择最优模型

  • 利用学习得到的最优模型对新数据进行分析或预测

步骤一:得到一个有限的数据集合

涉及到以下多个流程:

  1. 数据的采集

  2. 原始数据的格式化、标准化

  3. 原始去噪,去掉错误的值(而不是误差值,这里又涉及到一个复杂的问题,如何界定错误数据)

  4. 预处理(针对具体需要研究的问题、抽取相应地特征组成需要研究的数据集合)

步骤二:确定所有的学习模型集合

这个问题取决于我们选择怎么样的学习方法。常见得学习方法有:

  1. 感知机模型

  2. k近邻法

  3. 朴素贝叶斯法

  4. 决策树

  5. 逻辑斯谛回归和最大熵模型

  6. 支持向量机

  7. 提升方法AdaBoost

  8. EM算法

  9. 隐马尔可夫模型

  10. 条件随机场
    ...

而且这些算法还可以进行变异、组合然后形成新的算法模型。也是通常认为中数据挖掘比较核心的部分。

一些论文:历练NIPS和ICML大会的文章

步骤三:确定模型选择的策略

一般来说,当你确定了你的学习方法后,在学习的过程中会产生很多个模型。而如何在这些模型中间挑选最优的模型,成为了我们亟待解决的问题。

一般衡量一个模型的优秀程度我们使用两个指标:

  1. 拟合能力

  2. 泛化能力

拟合能力

表示模型的计算结果和实际结果的相差程度,我们一般使用风险函数来衡量。而风险函数是损失函数的期望。所以我们其实是使用损失函数来衡量一个模型的期望。

常见的损失函数:

  1. 0-1损失函数

  2. 平分损失函数

  3. 绝对值损失函数

  4. 对数损失函数

损失函数越小,模型的拟合能力就越好。

泛化能力

泛化能力是指模型对新数据的预测能力。一般来说,越复杂的模型的拟合能力越强,但是泛化能力越弱。所以我们需要选择一个适当复杂度的模型,使其泛化能力和拟合能力都足够强。

而衡量一个模型同时具有较好地泛化能力和拟合能力,我们一般用结构风险函数

结构风险函数是在风险函数的基础上面加上一个罚项。通过罚项来降低复杂度高的模型的结构风险函数值。从而达到筛选出合适的复杂度的模型的目的。

罚项一般取特征空间w的范数,一般有:

  1. L0范数

  2. L1范数

  3. L2范数

  4. 核范数 ...

步骤四:实现求解最优模型的算法并通过学习方法选择最优模型

求解最优模型的算法其实就是求解结构风险函数最小值得算法,即结构风险函数最优化的问题。

如果结构风险函数在我们所关心的区域中是凸函数的话,那么任何局部最小解也是全局最优解。现在已经有稳定,快速的数值计算方法来求二次可微地凸函数的最小值。

然而,很多时候我们没有办法通过结构风险函数直接算出它的最小值。我们只能通过一些迭代的方式获得局部最优解。

常见的通过迭代的方式获得局部最优解的算法有:

  1. 梯度下降法

  2. 牛顿法

  3. 共轭梯度法

  4. 线性搜索

  5. 置信域方法

另外还有一些算法:

  1. 模拟退火

  2. 遗传算法

  3. 类免疫算法

  4. 演化策略

  5. 差异演化算法

  6. 微粒群算法

  7. 神经网络

  8. 支持向量机

步骤五:利用学习得到的最优模型对新数据进行分析或预测

到这一步一般来说已经成功了,然后往往现实是残酷的,辛辛苦苦20年,一朝回到解放前。

往往学习得到的模型在实际使用过程当中并不是那么的理想。这里面有很多种原因:

有可能是原始数据的原因
有可能是特征选择的原因
有可能是模型的原因
有可能是最优模型算法的问题
有可能是代码错误
...

总之,以上的所有步骤的所有细节都可能导致你的模型不够优秀。这就需要你再次的思考这个问题,去不断的优化你的模型。直到得到一个不错的模型。

Don’t Panic!

Fighting!

小结

上面是我大概总结的一些关于数据挖掘相关的东西。

其实数据挖掘涉及的东西远比我上面说的这点东西多的多,我上面提到的还只是监督学习。就光我上面提到的几个步骤。其实每一个步骤都有很多很多东西可以讲,可以研究,工程方面的、算法理论方面的等等等等。

一入数据挖掘深似海,从此奋斗到天明。

But,Don’t Panic!

数据挖掘还是很有意思的,你可以用机器的力量、数学的力量理解世界的运行规律。去预测他或者利用你研究到的东西做一些有意思的事情。

原文作者来自MaxLeap团队_ Pythoner 专业打杂成员:Marvin Zhou

关于MaxLeap
MaxLeap移动云服务平台为企业提供一站式的移动研发和运营云服务,帮助企业快速研发和上线移动应用,平台提供数据云存储,云引擎,支付管理,IM,数据分析和营销自动化等服务。
MaxLeap官网链接: https://maxleap.cn


力谱云
本专栏专业提供 力谱云团队原创+翻译技术干货!主要以移动端研发+云服务等干货为主,其中也有测试、UI设...

力谱云 - 让每个企业都拥有自己的移动电商平台

2.6k 声望
226 粉丝
0 条评论
推荐阅读
Vert.x 3.4.x 之 Web Client
Vert.x不久前发布了3.4.0 release版本,该版本在语言支持上新增了Scala和Kotlin的支持,新引入了Web Client和Kafka Client,同时加强了微服务组件的功能,支持多种集群管理器供开发者选择(公司一位同事是vertx-zo...

力谱云1阅读 4.9k

6 大经典机器学习数据集,3w+ 用户票选得出,建议收藏
内容一览:本期汇总了超神经下载排名众多的 6 个数据集,涵盖图像识别、机器翻译、遥感影像等领域。这些数据集质量高、数据量大,经历人气认证值得收藏码住。关键词:数据集 机器翻译 机器视觉

超神经HyperAI1阅读 1.3k

封面图
90 后学霸博士 8 年进击战,用机器学习为化学工程研究叠 BUFF
本文首发自公众号:HyperAI 超神经 内容一览:ScienceAI 作为近两年的技术热点,引起了业界广泛关注和讨论。本文将围绕 ScienceAdvances 的一篇论文,介绍如何利用机器学习,对燃煤电厂的胺排放量进行预测。 关键...

超神经HyperAI1阅读 906

揭穿数据分析的六大谎言
目前许多企业在决策时仍沿用以往的个人经验,没有用数据说话,这在实际决策运行时会出现很多问题。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。用数据说话,重视定量分析...

葡萄城技术团队1阅读 296

封面图
交互式仪表板!Python轻松完成!⛵
💡 作者:韩信子@ShowMeAI📘 数据分析实战系列:[链接]📘 本文地址:[链接]📢 声明:版权所有,转载请联系平台与作者并注明出处📢 收藏ShowMeAI查看更多精彩内容💡 引言在本篇内容中,ShowMeAI将给大家讲解使用 📘ipywid...

ShowMeAI阅读 926

R语言APRIORI关联规则、K-MEANS均值聚类分析中药专利复方治疗用药规律网络可视化|附代码数据
方法检索治疗中药专利复方,排除外用中药及中西药物合用的复方。最近我们被要求撰写关于用药规律的研究报告,包括一些图形和统计输出。对入选的中药专利复方进行术语规范化等处理,抽取信息、建立表,应用数据分...

拓端tecdat阅读 890

Pandas处理大数据的性能优化技巧
Pandas是Python中最著名的数据分析工具。在处理数据集时,每个人都会使用到它。但是随着数据大小的增加,执行某些操作的某些方法会比其他方法花费更长的时间。所以了解和使用更快的方法非常重要,特别是在大型数...

deephub阅读 888

封面图

力谱云 - 让每个企业都拥有自己的移动电商平台

2.6k 声望
226 粉丝
宣传栏