2

前一阵子在忙项目,没什么更新,这次开始写点android源码内部的东西分析下。以6.0.1_r10版本android源码为例。
servicemanager是android服务管理,非常基础的组件之一,分析他的目的是能够深入看到binder的一些处理方式。在开始前先说下阅读源码或者非常复杂代码的方式,我的方式是层级进入,一层掌握脉络之后如果感兴趣再对具体的点深入分析了解,并且每层进行总结,这样我认为会比较好理解,也不容易产生一个点一直走下去,最后迷失在复杂繁琐的代码里的情况。当然我只代表我个人的体验。东西是写给自己的,如果能帮到他人我会非常高兴。

然后这里推荐下罗升阳先生的博客文章,确实非常不错,可以作为阅读参考。

servicemanager源码位于/frameworks/native/cmds/servicemanager/service_manager.c下:

347int main(int argc, char **argv)
348{
349    struct binder_state *bs;
350
351    bs = binder_open(128*1024);
352    if (!bs) {
353        ALOGE("failed to open binder driver\n");
354        return -1;
355    }
356
357    if (binder_become_context_manager(bs)) {
358        ALOGE("cannot become context manager (%s)\n", strerror(errno));
359        return -1;
360    }
361
362    selinux_enabled = is_selinux_enabled();
363    sehandle = selinux_android_service_context_handle();
364    selinux_status_open(true);
365
366    if (selinux_enabled > 0) {
367        if (sehandle == NULL) {
368            ALOGE("SELinux: Failed to acquire sehandle. Aborting.\n");
369            abort();
370        }
371
372        if (getcon(&service_manager_context) != 0) {
373            ALOGE("SELinux: Failed to acquire service_manager context. Aborting.\n");
374            abort();
375        }
376    }
377
378    union selinux_callback cb;
379    cb.func_audit = audit_callback;
380    selinux_set_callback(SELINUX_CB_AUDIT, cb);
381    cb.func_log = selinux_log_callback;
382    selinux_set_callback(SELINUX_CB_LOG, cb);
383
384    binder_loop(bs, svcmgr_handler);
385
386    return 0;
387}

1.binder_open打开binder驱动设备;
2.binder_become_context_manager(bs),将自己作为binder的管理者;
3.binder_loop(bs, svcmgr_handler),进入循环,作为server等待client的请求;

binder_open

位于/frameworks/native/cmds/servicemanager/binder.c:

96struct binder_state *binder_open(size_t mapsize)
97{
98    struct binder_state *bs;
99    struct binder_version vers;
100
101    bs = malloc(sizeof(*bs));
102    if (!bs) {
103        errno = ENOMEM;
104        return NULL;
105    }
106
107    bs->fd = open("/dev/binder", O_RDWR);
108    if (bs->fd < 0) {
109        fprintf(stderr,"binder: cannot open device (%s)\n",
110                strerror(errno));
111        goto fail_open;
112    }
113
114    if ((ioctl(bs->fd, BINDER_VERSION, &vers) == -1) ||
115        (vers.protocol_version != BINDER_CURRENT_PROTOCOL_VERSION)) {
116        fprintf(stderr,
117                "binder: kernel driver version (%d) differs from user space version (%d)\n",
118                vers.protocol_version, BINDER_CURRENT_PROTOCOL_VERSION);
119        goto fail_open;
120    }
121
122    bs->mapsize = mapsize;
123    bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0);
124    if (bs->mapped == MAP_FAILED) {
125        fprintf(stderr,"binder: cannot map device (%s)\n",
126                strerror(errno));
127        goto fail_map;
128    }
129
130    return bs;
131
132fail_map:
133    close(bs->fd);
134fail_open:
135    free(bs);
136    return NULL;
137}

首先,建立一个结构体binder_state,然后剩下的就是给这个结构体的成员赋值。bs->fd给打开的驱动设备文件描述符;bs->mapped给内存映射地址;
插一句,这里对goto的应用很规范,可见任何语句并非有好与不好,而在于怎么用。
看到这里其实可以猜测,binder的机制就是内存映射,或者可以说是文件映射,因为在linux上任何的设备都可以看做是文件。
现在不要深入,往回看,之前的service_manager.c的main函数里,后面就要走binder_become_context_manager这个将自己设为binder管理者。

146int binder_become_context_manager(struct binder_state *bs)
147{
148    return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
149}

这里就做了一件事儿,就是下发控制字,告诉驱动设置context管理者为0,这里也可以猜测,这个0代表一定含义,应该就是servicemanager自己,后面再继续解释这个问题。

binder_looper

372void binder_loop(struct binder_state *bs, binder_handler func)
373{
374    int res;
375    struct binder_write_read bwr;
376    uint32_t readbuf[32];
377
378    bwr.write_size = 0;
379    bwr.write_consumed = 0;
380    bwr.write_buffer = 0;
381
382    readbuf[0] = BC_ENTER_LOOPER;
383    binder_write(bs, readbuf, sizeof(uint32_t));
384
385    for (;;) {
386        bwr.read_size = sizeof(readbuf);
387        bwr.read_consumed = 0;
388        bwr.read_buffer = (uintptr_t) readbuf;
389
390        res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
391
392        if (res < 0) {
393            ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
394            break;
395        }
396
397        res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
398        if (res == 0) {
399            ALOGE("binder_loop: unexpected reply?!\n");
400            break;
401        }
402        if (res < 0) {
403            ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
404            break;
405        }
406    }

1.先通过binder_write下发了一个BC_ENTER_LOOPER控制字,表示要驱动设备进入looper状态(binder_write内部也是走的ioctrl BINDER_WRITE_READ写入驱动设备);
2.进入死循环,不停从设备读取数据,成功读取到之后,进入binder_parse函数;
3.binder_parse,从字面看是解析binder,但是具体做什么不清楚,只能猜测是对刚才读取到的内容进行处理。
同属于binder.c这一层,因此我们看看binder_parse具体内容:

204int binder_parse(struct binder_state *bs, struct binder_io *bio,
205                 uintptr_t ptr, size_t size, binder_handler func)
206{
207    int r = 1;
208    uintptr_t end = ptr + (uintptr_t) size;
209
210    while (ptr < end) {
211        uint32_t cmd = *(uint32_t *) ptr;
212        ptr += sizeof(uint32_t);
213#if TRACE
214        fprintf(stderr,"%s:\n", cmd_name(cmd));
215#endif
216        switch(cmd) {
217        case BR_NOOP:
218            break;
219        case BR_TRANSACTION_COMPLETE:
220            break;
221        case BR_INCREFS:
222        case BR_ACQUIRE:
223        case BR_RELEASE:
224        case BR_DECREFS:
225#if TRACE
226            fprintf(stderr,"  %p, %p\n", (void *)ptr, (void *)(ptr + sizeof(void *)));
227#endif
228            ptr += sizeof(struct binder_ptr_cookie);
229            break;
230        case BR_TRANSACTION: {
231            struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
232            if ((end - ptr) < sizeof(*txn)) {
233                ALOGE("parse: txn too small!\n");
234                return -1;
235            }
236            binder_dump_txn(txn);
237            if (func) {
238                unsigned rdata[256/4];
239                struct binder_io msg;
240                struct binder_io reply;
241                int res;
242
243                bio_init(&reply, rdata, sizeof(rdata), 4);
244                bio_init_from_txn(&msg, txn);
245                res = func(bs, txn, &msg, &reply);
246                binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
247            }
248            ptr += sizeof(*txn);
249            break;
250        }
251        case BR_REPLY: {
252            struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
253            if ((end - ptr) < sizeof(*txn)) {
254                ALOGE("parse: reply too small!\n");
255                return -1;
256            }
257            binder_dump_txn(txn);
258            if (bio) {
259                bio_init_from_txn(bio, txn);
260                bio = 0;
261            } else {
262                /* todo FREE BUFFER */
263            }
264            ptr += sizeof(*txn);
265            r = 0;
266            break;
267        }
268        case BR_DEAD_BINDER: {
269            struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;
270            ptr += sizeof(binder_uintptr_t);
271            death->func(bs, death->ptr);
272            break;
273        }
274        case BR_FAILED_REPLY:
275            r = -1;
276            break;
277        case BR_DEAD_REPLY:
278            r = -1;
279            break;
280        default:
281            ALOGE("parse: OOPS %d\n", cmd);
282            return -1;
283        }
284    }
285
286    return r;
287}

刚才从驱动设备读取的buffer的前32位取出来作为cmd进行switch判断处理。BR_代表从设备驱动反馈的命令,BR_TRANSACTION字面看是交易,那么可以猜测是对接受到的发送方(client)的内容进行处理。往下看,BR_TRANSACTION流程里,先把收到的数据转成binder_transaction_data结构,然后走了binder_dump_txn,这里基本上就是输出一些信息,不太关注。之后是关键的部分,调用了func,这个东西是个binder_handler,其实看看定义就知道,是个回调函数,回到servicemanager里面的main,可以看到是个svcmgr_handler,具体内容也在servicemanager里面,如下:

244int svcmgr_handler(struct binder_state *bs,
245                   struct binder_transaction_data *txn,
246                   struct binder_io *msg,
247                   struct binder_io *reply)
248{
249    struct svcinfo *si;
250    uint16_t *s;
251    size_t len;
252    uint32_t handle;
253    uint32_t strict_policy;
254    int allow_isolated;
255
256    //ALOGI("target=%p code=%d pid=%d uid=%d\n",
257    //      (void*) txn->target.ptr, txn->code, txn->sender_pid, txn->sender_euid);
258
259    if (txn->target.ptr != BINDER_SERVICE_MANAGER)
260        return -1;
261
262    if (txn->code == PING_TRANSACTION)
263        return 0;
264
265    // Equivalent to Parcel::enforceInterface(), reading the RPC
266    // header with the strict mode policy mask and the interface name.
267    // Note that we ignore the strict_policy and don't propagate it
268    // further (since we do no outbound RPCs anyway).
269    strict_policy = bio_get_uint32(msg);
270    s = bio_get_string16(msg, &len);
271    if (s == NULL) {
272        return -1;
273    }
274
275    if ((len != (sizeof(svcmgr_id) / 2)) ||
276        memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {
277        fprintf(stderr,"invalid id %s\n", str8(s, len));
278        return -1;
279    }
280
281    if (sehandle && selinux_status_updated() > 0) {
282        struct selabel_handle *tmp_sehandle = selinux_android_service_context_handle();
283        if (tmp_sehandle) {
284            selabel_close(sehandle);
285            sehandle = tmp_sehandle;
286        }
287    }
288
289    switch(txn->code) {
290    case SVC_MGR_GET_SERVICE:
291    case SVC_MGR_CHECK_SERVICE:
292        s = bio_get_string16(msg, &len);
293        if (s == NULL) {
294            return -1;
295        }
296        handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid);
297        if (!handle)
298            break;
299        bio_put_ref(reply, handle);
300        return 0;
301
302    case SVC_MGR_ADD_SERVICE:
303        s = bio_get_string16(msg, &len);
304        if (s == NULL) {
305            return -1;
306        }
307        handle = bio_get_ref(msg);
308        allow_isolated = bio_get_uint32(msg) ? 1 : 0;
309        if (do_add_service(bs, s, len, handle, txn->sender_euid,
310            allow_isolated, txn->sender_pid))
311            return -1;
312        break;
313
314    case SVC_MGR_LIST_SERVICES: {
315        uint32_t n = bio_get_uint32(msg);
316
317        if (!svc_can_list(txn->sender_pid)) {
318            ALOGE("list_service() uid=%d - PERMISSION DENIED\n",
319                    txn->sender_euid);
320            return -1;
321        }
322        si = svclist;
323        while ((n-- > 0) && si)
324            si = si->next;
325        if (si) {
326            bio_put_string16(reply, si->name);
327            return 0;
328        }
329        return -1;
330    }
331    default:
332        ALOGE("unknown code %d\n", txn->code);
333        return -1;
334    }
335
336    bio_put_uint32(reply, 0);
337    return 0;
338}

简单看下,就是对传递的数据的具体处理,包括了addservice等具体的过程处理。暂时先不深究。

至此我们可以看出来,servicemanager->binder.c这层基本上就是servicemanager提供系统的服务管理,binder.c提供对驱动设备的操作api。整个过程再梳理下:
1.打开binder驱动设备;
2.将自己作为binder上下文的管理者,通过binder.c传递0给设备驱动(ioctrl);
3.进入binder_looper循环,不停从binder设备驱动读取内容,并解析,然后根据cmd判断后抛给servicemanager进行真正处理;
4.servicemanager里再根据读取到的数据内容来决定进行各种cmd动作的处理,包括addservice等;
这么看这一层的脉络基本上比较清晰了。这么写把binder独立了出来作为一个api层,可以搭载任何的生成调用,也就是说binder.c这一层只管与binder设备驱动通讯,其余的抛给调用者,很标准聪明的解耦。


机械面条
77 声望31 粉丝