docker
docker pull sequenceiq/spark:1.6.0
docker run -it -p 8088:8088 -p 8042:8042 -p 4040:4040 -h sandbox sequenceiq/spark:1.6.0 bash
maven
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!-- SPARK -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- SPARK STREAMING -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
<exclusions>
<exclusion>
<artifactId>commons-logging</artifactId>
<groupId>commons-logging</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_${scala.binary.version}</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- JACKSON SCALA -->
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-scala_${scala.binary.version}</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.module</groupId>
<artifactId>jackson-module-jaxb-annotations</artifactId>
<version>2.7.4</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.7.4</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.7.4</version>
</dependency>
版本
<scala.binary.version>2.10</scala.binary.version>
<spark.version>1.6.1</spark.version>
主要需要引入jackson的scala版本,否则报错如下:
Exception in thread "main" java.lang.VerifyError: class com.fasterxml.jackson.module.scala.ser.ScalaIteratorSerializer overrides final method withResolved.(Lcom/fasterxml/jackson/databind/BeanProperty;Lcom/fasterxml/jackson/databind/jsontype/TypeSerializer;Lcom/fasterxml/jackson/databind/JsonSerializer;)Lcom/fasterxml/jackson/databind/ser/std/AsArraySerializerBase;
streaming
/**
* nc -lk 9999
* http://192.168.0.102:4040
*/
public void start(){
ch.qos.logback.classic.Logger root = (ch.qos.logback.classic.Logger)LoggerFactory.getLogger(Logger.ROOT_LOGGER_NAME);
root.setLevel(Level.WARN);
SparkConf sparkConf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount");
JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1));
// Create a DStream that will connect to hostname:port, like localhost:9999
JavaReceiverInputDStream<String> lines = streamingContext.socketTextStream("localhost", 9999);
// Split each line into words
JavaDStream<String> words = lines.flatMap(
new FlatMapFunction<String, String>() {
@Override public Iterable<String> call(String x) {
LOGGER.debug("flatMap called -> [{}]", x);
return Arrays.asList(x.split(" "));
}
});
// Count each word in each batch
JavaPairDStream<String, Integer> pairs = words.mapToPair(
new PairFunction<String, String, Integer>() {
@Override public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
});
JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey(
new Function2<Integer, Integer, Integer>() {
@Override public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
// Print the first ten elements of each RDD generated in this DStream to the console
wordCounts.print();
streamingContext.start(); // Start the computation
streamingContext.awaitTermination(); // Wait for the computation to terminate
}
run
启动netcat
nc -lk 9999
运行,然后输入空格间隔的字符串,然后打开spark-ui
http://192.168.0.102:4040/
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。