Problem
Given a positive integer n and you can do operations as follow:
If n is even, replace n with n/2.
If n is odd, you can replace n with either n + 1 or n - 1.
What is the minimum number of replacements needed for n to become 1?
Example
Example 1:
Input:
8
Output:
3
Explanation:
8 -> 4 -> 2 -> 1
Example 2:
Input:
7
Output:
4
Explanation:
7 -> 8 -> 4 -> 2 -> 1
or
7 -> 6 -> 3 -> 2 -> 1
Note
记一种简单的iteration的做法:
先讨论边界case,若n为Integer最大值,返回32.
然后对整数n分奇偶两种情况讨论,偶数除以2,奇数判断是否+1后能被4整除且n不等于3,若如此则+1,否则-1. 每次操作后计数器+1,循环结束后返回计数器值。
Solution
public class Solution {
public int integerReplacement(int n) {
if (n == Integer.MAX_VALUE) return 32;
int count = 0;
while (n != 1) {
if (n%2 == 0) n/=2;
else {
if ((n+1)%4==0 && n!=3) n+=1;
else n-=1;
}
count++;
}
return count;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。