最简单的深度搜索,空间复杂度也比较高,花费在List的复制上。

public class Solution {
    public List<List<Integer>> permute(int[] nums) {
        List<Integer> left = new ArrayList<Integer>();
        for (int num : nums) {
            left.add(num);
        }
        List<List<Integer>> result = new ArrayList<List<Integer>>();
        List<Integer> in = new ArrayList<Integer>();
        dfs(in, left, left.size(), result);
        return result;
    }
    
    // in为已经进入排列的,left为nums除掉in剩下的
    public void dfs(List<Integer> in, List<Integer> left, int length, List<List<Integer>> result) {
        if (in.size() == length) {
            result.add(in);
            return;
        }
        
        for (int i = 0; i < left.size(); i++) {
            List<Integer> newIn = new ArrayList<Integer>(in);
            List<Integer> newLeft = new ArrayList<Integer>(left);
            newIn.add(left.get(i));
            newLeft.remove(i);
            dfs(newIn, newLeft, length, result);
        }
    }
}

基于交换与递归的全排列

public class Solution {
    public List<List<Integer>> permute(int[] nums) {
        List<Integer> left = new ArrayList<Integer>();
        for (int num : nums) {
            left.add(num);
        }
        List<List<Integer>> results = new ArrayList<List<Integer>>();
        List<Integer> in = new ArrayList<Integer>();
        dfs(nums, 0, results);
        return results;
    }
    
    
    public void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j]  = temp;
    }
    
    
    public void dfs(int[] nums, int l, List<List<Integer>> results) {
        if (l == nums.length) {
            List<Integer> result = new ArrayList<Integer>();
            for (int num : nums) {
                result.add(num);
            }
            results.add(result);
        }
        
        for (int i = l; i < nums.length; i++) {
            swap(nums, l, i);
            dfs(nums, l+1, results);
            swap(nums, l, i);
        }
    }
}

基于迭代的全排列
字典序法,参考字典序全排列算法研究

【例】 如何得到346987521的下一个

1,从尾部往前找第一个P(i-1) < P(i)的位置3 4 6 <- 9 <- 8 <- 7 <- 5 <- 2 <- 1 最终找到6是第一个变小的数字,记录下6的位置i-1
2,从i位置往后找到最后一个大于6的数
        3 4 6 -> 9 -> 8 -> 7 5 2 1
    最终找到7的位置,记录位置为m
3,交换位置i-1和m的值
        3 4 7 9 8 6 5 2 1
4,倒序i位置后的所有数据
        3 4 7 1 2 5 6 8 9
则347125689为346987521的下一个排列
public class Solution {
    public List<List<Integer>> permute(int[] nums) {
        List<List<Integer>> results = new ArrayList<List<Integer>>();
        List<Integer> source = new ArrayList<Integer>();
        for (int num : nums) {
            source.add(num);
        }
        Collections.sort(source);
        
        for (int i = 0; i < source.size(); i++) {
            nums[i] = source.get(i);
        }
        
        while(next_permute(nums, results)) {
            
        }
        
        return results;
    }
    
    
    public void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }
    
    public boolean next_permute(int[] nums, List<List<Integer>> results) {
        
        List<Integer> result = new ArrayList<Integer>();
        
        for (int num : nums) {
            result.add(num);
        }
        
        results.add(result);
         
        // 1. from right to left find the partition number, ther first voilate increasing number
        int length = nums.length;
        int partitionKey = -1;
        for (int i = length - 1; i > 0; i-- ) {
            if (nums[i] > nums[i - 1]) {
                partitionKey = i - 1;
                break;
            }
        }
        
        if (partitionKey == -1) {
            return false;
        }
        
        // 2. from right to left find the first change number larger than the partition number
        
        int changeKey = -1;
        
        for (int i = length - 1; i > 0; i-- ) {
            if (nums[i] > nums[partitionKey]) {
                changeKey = i;
                break;
            }
        }
        
        swap(nums, partitionKey, changeKey);
        
        // 3. reverse all the nums at the right of partitionKey
        for (int i = partitionKey + 1; i <= (partitionKey+length)/2 ;i++) {
            swap(nums, i, partitionKey + length - i);
        }
        
        return true;
    }
}

chenatu
106 声望12 粉丝