Subsets
Problem
Given a set of distinct integers, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
Solution
public class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if (nums == null || nums.length == 0) return res;
Arrays.sort(nums);
helper(nums, res, new ArrayList<Integer>(), 0);
return res;
}
public void helper(int[] nums, List<List<Integer>> res, List<Integer> cur, int start) {
res.add(new ArrayList<Integer>(cur));
for (int i = start; i < nums.length; i++) {
cur.add(nums[i]);
helper(nums, res, cur, i+1);
cur.remove(cur.size()-1);
}
}
}
Subsets II
Problem
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,2], a solution is:
[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
Solution
public class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if (nums == null || nums.length == 0) return res;
Arrays.sort(nums);
helper(nums, new ArrayList<Integer>(), res, 0);
return res;
}
public void helper(int[] nums, List<Integer> cur, List<List<Integer>> res, int start) {
res.add(new ArrayList<Integer>(cur));
for (int i = start; i < nums.length; i++) {
if (i > start && nums[i] == nums[i-1]) continue;
cur.add(nums[i]);
helper(nums, cur, res, i+1);
cur.remove(cur.size()-1);
}
}
}
Permutations (不同数)
Problem
Given a collection of distinct numbers, return all possible permutations.
For example,
[1,2,3] have the following permutations:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
Solution
public class Solution {
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if (nums == null || nums.length == 0) return res;
helper(nums, new ArrayList<Integer>(), res);
return res;
}
public void helper(int[] nums, List<Integer> cur, List<List<Integer>> res) {
if (cur.size() == nums.length) res.add(new ArrayList<Integer>(cur));
else for (int i = 0; i < nums.length; i++) {
if (cur.contains(nums[i])) continue;
cur.add(nums[i]);
helper(nums, cur, res);
cur.remove(cur.size()-1);
}
}
}
Permutations II (包含重复数)
Problem
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,
[1,1,2] have the following unique permutations:
[
[1,1,2],
[1,2,1],
[2,1,1]
]
Note
used[i]为true的时候,表示在外层的循环正在被使用,所以当前循环遇到used[i]为true一定要跳过。
对当前循环要添加的数组cur,在添加当前元素后进行递归,递归之后要将当前元素nums[i]的使用标记used[i]改为false,表示已经使用和递归完毕,然后再将这个元素从cur的末位删除。
Solution
public class Solution {
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
if (nums == null || nums.length == 0) return res;
Arrays.sort(nums);
helper(nums, new ArrayList<Integer>(), res, new boolean[nums.length]);
return res;
}
public void helper(int[] nums, List<Integer> cur, List<List<Integer>> res, boolean[] used) {
if (cur.size() == nums.length) {
res.add(new ArrayList<Integer> (cur));
return;
}
for (int i = 0; i < nums.length; i++) {
if (used[i] || (i != 0 && nums[i] == nums[i-1] && !used[i-1])) continue;
else {
used[i] = true;
cur.add(nums[i]);
helper(nums, cur, res, used);
used[i] = false;
cur.remove(cur.size()-1);
}
}
}
}
Combination Sum
Problem
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7] and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]
Solution
public class Solution {
public List<List<Integer>> combinationSum(int[] A, int target) {
List<List<Integer>> res = new ArrayList<>();
if (A == null || A.length == 0) return res;
Arrays.sort(A);
helper(A, new ArrayList<Integer>(), res, target, 0);
return res;
}
public void helper(int[] A, List<Integer> cur, List<List<Integer>> res, int target, int start) {
if (target == 0) res.add(new ArrayList<>(cur));
if (target < 0) return;
for (int i = start; i < A.length; i++) {
cur.add(A[i]);
helper(A, cur, res, target-A[i], i);
cur.remove(cur.size()-1);
}
}
}
Combination Sum II
Problem
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Solution
public class Solution {
public List<List<Integer>> combinationSum2(int[] A, int target) {
List<List<Integer>> res = new ArrayList<>();
if (A == null || A.length == 0) return res;
Arrays.sort(A);
helper(A, new ArrayList<>(), res, target, 0);
return res;
}
public void helper(int[] A, List<Integer> cur, List<List<Integer>> res, int target, int start) {
if (target == 0) {
res.add(new ArrayList<Integer> (cur));
return;
}
if (target < 0) return;
for (int i = start; i < A.length; i++) {
if (i != start && A[i] == A[i-1]) continue;
cur.add(A[i]);
helper(A, cur, res, target-A[i], i+1);
cur.remove(cur.size()-1);
}
}
}
Combination Sum III
Problem
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Example 1:
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
Solution
public class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> res = new ArrayList<>();
helper(k, n, new ArrayList<>(), res, 1);
return res;
}
public void helper(int k, int n, List<Integer> cur, List<List<Integer>> res, int start) {
if (n < 0) return;
if (k == 0 && n == 0) res.add(new ArrayList<>(cur));
for (int i = start; i <= 9; i++) {
cur.add(i);
helper(k-1, n-i, cur, res, i+1);
cur.remove(cur.size()-1);
}
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。