题目: 给一个正整数n,问他最少能被几个完全平方数和表示。
举例: 13=4+9, 返回2;12 = 4+4+4, 返回3;
解法:
我能看懂的就只有dynamic-programming的方法,原理如下:
dp[0] = 0
dp[1] = dp[0]+1 = 1
dp[2] = dp[1]+1 = 2
dp[3] = dp[2]+1 = 3
dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 }
= Min{ dp[3]+1, dp[0]+1 }
= 1
dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 }
= Min{ dp[4]+1, dp[1]+1 }
= 2
.
.
.
dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 }
= Min{ dp[12]+1, dp[9]+1, dp[4]+1 }
= 2
.
.
.
dp[n] = Min{ dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1
代码:
public int numSquares(int n) {
int[] dp = new int[n + 1];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int i = 1; i <= n; ++i) {
int min = Integer.MAX_VALUE;
int j = 1;
while(i - j*j >= 0) {
min = Math.min(min, dp[i - j*j] + 1);
++j;
}
dp[i] = min;
}
return dp[n];
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。