题目: 给一个正整数n,问他最少能被几个完全平方数和表示。

举例: 13=4+9, 返回2;12 = 4+4+4, 返回3;


解法:
我能看懂的就只有dynamic-programming的方法,原理如下:

dp[0] = 0 
dp[1] = dp[0]+1 = 1
dp[2] = dp[1]+1 = 2
dp[3] = dp[2]+1 = 3
dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 } 
      = Min{ dp[3]+1, dp[0]+1 } 
      = 1                
dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 } 
      = Min{ dp[4]+1, dp[1]+1 } 
      = 2
                        .
                        .
                        .
dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1, dp[13-3*3]+1 } 
       = Min{ dp[12]+1, dp[9]+1, dp[4]+1 } 
       = 2
                        .
                        .
                        .
dp[n] = Min{ dp[n - i*i] + 1 },  n - i*i >=0 && i >= 1

代码:

public int numSquares(int n) {
    int[] dp = new int[n + 1];
    Arrays.fill(dp, Integer.MAX_VALUE);
    dp[0] = 0;
    for(int i = 1; i <= n; ++i) {
        int min = Integer.MAX_VALUE;
        int j = 1;
        while(i - j*j >= 0) {
            min = Math.min(min, dp[i - j*j] + 1);
            ++j;
        }
        dp[i] = min;
    }        
    return dp[n];
}

Ref:
An easy understanding DP solution in Java


KirkBai
27 声望6 粉丝