LeetCode[329] Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing
path.From each cell, you can either move to four directions: left, right,
up or down. You may NOT move diagonally or move outside of the
boundary (i.e. wrap-around is not allowed).Example 1:
nums = [
[9,9,4], [6,6,8], [2,1,1] ]
Return 4 The longest
increasing path is [1, 2, 6, 9].Example 2:
nums = [ [3,4,5], [3,2,6], [2,2,1] ] Return 4 The longest
increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
DP + DFS
复杂度
O(MN),O(N)
思路
为了避免搜索已经搜索的点。所以考虑用一个dp数组,记录到每一个点能产生的最长序列的长度。考虑用dfs进行搜索,对于每一个点来说,考虑先找到最小的那个点针对每一条路径的。然后对于每一点再递增回去,依次累积找到增加的值。
代码
public int longestIncreasingPath(int[][] matrix) {
if(matrix.length == 0) return 0;
int row = matrix.length, col = matrix[0].length;
int[][] dp = new int[row][col];
//dp = {0};
int val = 0;
for(int i = 0; i < row; i ++) {
for(int j = 0; j < col; j ++) {
if(helper(matrix, i, j, dp) > val) {
val = helper(matrix, i, j, dp);
}
}
}
return val;
}
public int helper(int[][] matrix, int i, int j, int[][] dp) {
//this is the point;
if(dp[i][j] != 0) return dp[i][j];
int val = 0;
if(i + 1 < matrix.length && matrix[i + 1][j] < matrix[i][j]) {
val = Math.max(val, helper(matrix, i + 1, j, dp));
}
if(i - 1 >= 0 && matrix[i - 1][j] < matrix[i][j]) {
val = Math.max(val, helper(matrix, i - 1, j, dp));
}
if(j + 1 < matrix[0].length && matrix[i][j + 1] < matrix[i][j]) {
val = Math.max(val, helper(matrix, i, j + 1, dp));
}
if(j - 1 >= 0 && matrix[i][j - 1] < matrix[i][j]) {
val = Math.max(val, helper(matrix, i, j - 1, dp));
}
dp[i][j] = val + 1;
return dp[i][j];
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。