LeetCode[72] Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
DP
复杂度
O(MN), O(MN)
思路
考虑用二维dp来表示变换的情况。
如果两个字符串中的字符相等,a[i] = b[j]
,那么dp[i][j] = dp[i - 1][j - 1] + 1;
如果两个字符串中的字符不相等,那么考虑不同的情况
insert: dp[i][j] = dp[i][j - 1] + 1;
replace: dp[i][j] = dp[i - 1][j - 1] + 1;
delete: dp[i][j] = dp[i - 1][j] + 1;
dp[i][j]表示的是,从字符串1到i的位置转换到字符串2到j的位置,所需要的最少步数。
代码
public int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1 + 1][len2 + 1];
// initialize the dp array;
for(int i = 0; i < len1; i ++) {
dp[i + 1][0] = i + 1;
}
for(int j = 0; j < len2; j ++) {
dp[0][j + 1] = j + 1;
}
//
char[] arr1 = word1.toCharArray();
char[] arr2 = word2.toCharArray();
for(int i = 0; i < len1; i ++) {
for(int j = 0; j < len2; j ++) {
if(arr1[i] == arr2[j]) {
dp[i][j] = dp[i - 1][j - 1] + 1;
}
else {
dp[i][j] = Math.min(dp[i - 1][j - 1],
Math.min(dp[i][j - 1], dp[i - 1][j])) + 1;
}
}
}
return dp[len1][len2];
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。