1. 题目
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
2. 思路
m*n的棋盘,向下是m-1步,向上是n-1步。
在所有的m+n-2步中选择m-1步向下,因此总走法是C(m+n-2, m-1)
本地的复杂度本来应该是组合公式运算的溢出,结果发现标准答案也没考虑溢出问题,试了一下直接计算提交即可AC。
3. 代码
耗时:0ms
class Solution {
public:
// 一共走(m-1)+(n-1)步, 从其中选择m-1步向下
// 所以总的走法是C(m+n-2, m-1)
int uniquePaths(int m, int n) {
m--; n--;
long long mn = m + n;
long long mn_max = max(m, n);
long long mn_min = min(m, n);
long long c = 1;
for (int i = mn_max + 1; i <= mn; i++) {
c *= i;
}
for (int j = 2; j <= mn_min; j++) {
c /= j;
}
return c;
}
};
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。