SparkContext
SparkContext 是Spark 应用的主入口,通过它可以连接Spark 集群,并在集群中创建RDD,累加器,广播变量等;==每一个启动 JVM 上只能有一个SparkContext,在启动一个新的SparkContext之前,必须停掉处于活动状态的SparkContext==。
/**
* Main entry point for Spark functionality. A SparkContext represents the connection to a Spark
* cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster.
*
* Only one SparkContext may be active per JVM. You must `stop()` the active SparkContext before
* creating a new one. This limitation may eventually be removed; see SPARK-2243 for more details.
*
* @param config a Spark Config object describing the application configuration. Any settings in
* this config overrides the default configs as well as system properties.
*/
class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationClient {
StreamingContext
StreamingContext 是Spark Streaming 应用的主入口,它可以从输入的数据源中创建DStream。它可以通过制定Spark master URL 和 appName来创建,也可以从SparkConf 中创建,==或者从已经存在的SparkContext 中创建==。相关联的SparkContext 可以通过context.sparkContext
得到。创建和转换DStreams后,流计算可以使用context.start()
启动或使用context.stop()
停止。context.awaitTermination()
允许当前线程一直等待,直到context 进行stop()
或者抛出异常才会终止。
/**
* Main entry point for Spark Streaming functionality. It provides methods used to create
* [[org.apache.spark.streaming.dstream.DStream]]s from various input sources. It can be either
* created by providing a Spark master URL and an appName, or from a org.apache.spark.SparkConf
* configuration (see core Spark documentation), or from an existing org.apache.spark.SparkContext.
* The associated SparkContext can be accessed using `context.sparkContext`. After
* creating and transforming DStreams, the streaming computation can be started and stopped
* using `context.start()` and `context.stop()`, respectively.
* `context.awaitTermination()` allows the current thread to wait for the termination
* of the context by `stop()` or by an exception.
*/
class StreamingContext private[streaming] (
sc_ : SparkContext,
cp_ : Checkpoint,
batchDur_ : Duration
) extends Logging {
SQLContext
SQLContext 是Spark 中运行==结构化数据==的主入口,可以创建DataFrame 对象,并执行SQL 查询。
/**
* The entry point for working with structured data (rows and columns) in Spark. Allows the
* creation of [[DataFrame]] objects as well as the execution of SQL queries.
*
* @groupname basic Basic Operations
* @groupname ddl_ops Persistent Catalog DDL
* @groupname cachemgmt Cached Table Management
* @groupname genericdata Generic Data Sources
* @groupname specificdata Specific Data Sources
* @groupname config Configuration
* @groupname dataframes Custom DataFrame Creation
* @groupname Ungrouped Support functions for language integrated queries
*
* @since 1.0.0
*/
class SQLContext private[sql](
@transient val sparkContext: SparkContext,
@transient protected[sql] val cacheManager: CacheManager,
@transient private[sql] val listener: SQLListener,
val isRootContext: Boolean)
extends org.apache.spark.Logging with Serializable {
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。