原文:https://ethsonliu.com/2018/04...
给定一个字符串,求出其最长回文子串。例如:
- s="abcd",最长回文长度为 1;
- s="ababa",最长回文长度为 5;
- s="abccb",最长回文长度为 4,即 bccb。
以上问题的传统思路大概是,遍历每一个字符,以该字符为中心向两边查找。其时间复杂度为 $O(n^2)$,效率很差。
1975 年,一个叫 Manacher 的人发明了一个算法,Manacher 算法(中文名:马拉车算法),该算法可以把时间复杂度提升到 $O(n)$。下面来看看马拉车算法是如何工作的。
算法过程分析
由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是:
- 在字符串首尾及每个字符间都插入一个 "#",这样可以使得原先的奇偶回文都变为奇回文;
- 接着再在首尾两端各插入 "$" 和 "^",这样中心扩展寻找回文的时候会自动退出循环,不需每次判断是否越界,可参见下面代码。
- 上述新插入的三个字符,即 "#"、 "$" 和 "^",必须各异,且不可以与原字符串中的字符相同。
举个例子:s="abbahopxpo"
,转换为 s_new="$#a#b#b#a#h#o#p#x#p#o#^"
。如此,s 里起初有一个偶回文 abba
和一个奇回文 opxpo
,被转换为 #a#b#b#a#
和 #o#p#x#p#o#
,长度都转换成了奇数。
定义一个辅助数组 int p[]
,其中 p[i]
表示以 i 为中心的最长回文的半径,例如:
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
s_new[i] | $ | # | a | # | b | # | b | # | a | # | h | # | o | # | p | # | x | # | p | # | o | # | ^ |
p[i] | 1 | 1 | 2 | 1 | 2 | 5 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 6 | 1 | 2 | 1 | 2 | 1 | 1 |
可以看出,p[i] - 1
正好是原字符串中最长回文串的长度。
接下来的重点就是求解 p 数组,如下图:
设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是 mx = id + p[id]
。
假设我们现在求 p[i]
,也就是以 i 为中心的最长回文半径,如果 i < mx
,如上图,那么:
if (i < mx)
p[i] = min(p[2 * id - i], mx - i);
2 * id - i
为 i 关于 id 的对称点,即上图的 j 点,而 p[j]
表示以 j 为中心的最长回文半径,因此我们可以利用 p[j]
来加快查找。
代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
char s[1000];
char s_new[2000];
int p[2000];
int Init()
{
int len = strlen(s);
s_new[0] = '$';
s_new[1] = '#';
int j = 2;
for (int i = 0; i < len; i++)
{
s_new[j++] = s[i];
s_new[j++] = '#';
}
s_new[j++] = '^'; // 别忘了哦
s_new[j] = '\0'; // 这是一个好习惯
return j; // 返回 s_new 的长度
}
int Manacher()
{
int len = Init(); // 取得新字符串长度并完成向 s_new 的转换
int max_len = -1; // 最长回文长度
int id;
int mx = 0;
for (int i = 1; i < len; i++)
{
if (i < mx)
p[i] = min(p[2 * id - i], mx - i); // 需搞清楚上面那张图含义,mx 和 2*id-i 的含义
else
p[i] = 1;
while (s_new[i - p[i]] == s_new[i + p[i]]) // 不需边界判断,因为左有 $,右有 ^
p[i]++;
// 我们每走一步 i,都要和 mx 比较,我们希望 mx 尽可能的远,
// 这样才能更有机会执行 if (i < mx)这句代码,从而提高效率
if (mx < i + p[i])
{
id = i;
mx = i + p[i];
}
max_len = max(max_len, p[i] - 1);
}
return max_len;
}
int main()
{
while (printf("请输入字符串:"))
{
scanf("%s", s);
printf("最长回文长度为 %d\n\n", Manacher());
}
return 0;
}
测试如下:
请输入字符串:abbahopxpo
最长回文长度为 5
请输入字符串:a
最长回文长度为 1
请输入字符串:aa
最长回文长度为 2
请输入字符串:abax
最长回文长度为 3
算法复杂度分析
文章开头已经提及,Manacher 算法为线性算法,即使最差情况下其时间复杂度亦为 $O(n)$,在进行证明之前,我们还需要更加深入地理解上述算法过程。
根据回文的性质,p[i]
的值基于以下三种情况得出:
(1):j 的回文串有一部分在 id 的之外,如下图:
上图中,黑线为 id 的回文,i 与 j 关于 id 对称,红线为 j 的回文。那么根据代码此时 p[i] = mx - i
,即紫线。那么 p[i]
还可以更大么?答案是不可能!见下图:
假设右侧新增的紫色部分是 p[i]
可以增加的部分,那么根据回文的性质,a 等于 d ,也就是说 id 的回文不仅仅是黑线,而是黑线+两条紫线,矛盾,所以假设不成立,故 p[i] = mx - i
,不可以再增加一分。
(2):j 回文串全部在 id 的内部,如下图:
根据代码,此时 p[i] = p[j]
,那么 p[i]
还可以更大么?答案亦是不可能!见下图:
假设右侧新增的红色部分是 p[i]
可以增加的部分,那么根据回文的性质,a 等于 b ,也就是说 j 的回文应该再加上 a 和 b ,矛盾,所以假设不成立,故 p[i] = p[j]
,也不可以再增加一分。
(3):j 回文串左端正好与 id 的回文串左端重合,见下图:
根据代码,此时 p[i] = p[j]
或 p[i] = mx - i
,并且 p[i]
还可以继续增加,所以需要
while (s_new[i - p[i]] == s_new[i + p[i]])
p[i]++;
根据(1)(2)(3),很容易推出 Manacher 算法的最坏情况,即为字符串内全是相同字符的时候。在这里我们重点研究 Manacher() 中的 for 语句,推算发现 for 语句内平均访问每个字符 5 次,即时间复杂度为:$T_{worst}(n)=O(n)$。
同理,我们也很容易知道最佳情况下的时间复杂度,即字符串内字符各不相同的时候。推算得平均访问每个字符 4 次,即时间复杂度为:$T_{best}(n)=O(n)$。
综上,Manacher 算法的时间复杂度为 $O(n)$。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。