72 Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
给出两个解,一个是填dp表,一个是记忆化搜索。效果是memorized search更好。
因为dp填表一定会把O(m*n)的dp表填满。
memorized search走出来的则是一条从起点到终点的线,不会填满整个表。时间退化到O(m+n),变成找路径的时间。
public class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length();
int n = word2.length();
int[][] dp = new int[m+1][n+1];
for(int i=0; i<=m; i++) {
for(int j=0; j<=n;j++) {
if(i == 0) {
dp[i][j] = j;
} else if( j == 0){
dp[i][j] = i;
} else if(word1.charAt(i-1) == word2.charAt(j-1) ) {
dp[i][j] = dp[i-1][j-1];
} else {
dp[i][j] = 1 + Math.min(Math.min(dp[i-1][j], dp[i][j-1]), dp[i-1][j-1]);
}
}
}
return dp[m][n];
}
}
public class Solution {
int[][] dp;
public int minDistance(String word1, String word2) {
dp = new int[word1.length()][word2.length()];
return minDistanceHelper(word1, word2, 0, 0);
}
private int minDistanceHelper(String word1, String word2, int index1, int index2) {
if (index1 == word1.length()) return word2.length() - index2;
if (index2 == word2.length()) return word1.length() - index1;
if (dp[index1][index2] > 0) return dp[index1][index2];
int result;
if (word1.charAt(index1) == word2.charAt(index2)) {
result = minDistanceHelper(word1, word2, index1+1, index2+1);
} else {
// replace char "abac" , "abdc" replace 'a' with 'd'
result = 1 + minDistanceHelper(word1, word2, index1+1, index2+1);
// insert char into word1 "abc" , "abdc" insert 'd'
result = Math.min(result, 1 + minDistanceHelper(word1, word2, index1, index2+1));
// delete char from word1 "abdc" , "abc" delete 'd'
result = Math.min(result, 1 + minDistanceHelper(word1, word2, index1+1, index2));
}
dp[index1][index2] = result;
return result;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。