本来是想直接深入到mars的核心层去看的,但是发现其实上面的samples部分还有好些没有分析到,因此回来继续分析。
ConversationActivity这个类中实际上还做了很多的工作,在onCreate中:
final MainService mainService = new MainService();
MarsServiceProxy.setOnPushMessageListener(BaseConstants.CGIHISTORY_CMDID, mainService);
MarsServiceProxy.setOnPushMessageListener(BaseConstants.CONNSTATUS_CMDID, mainService);
MarsServiceProxy.setOnPushMessageListener(BaseConstants.FLOW_CMDID, mainService);
MarsServiceProxy.setOnPushMessageListener(BaseConstants.PUSHMSG_CMDID, mainService);
MarsServiceProxy.setOnPushMessageListener(BaseConstants.SDTRESULT_CMDID, mainService);
这里出现了一个MainService,我们来看看:
/mars-master/samples/android/marsSampleChat/app/src/main/java/com/tencent/mars/sample/core/MainService.java
public class MainService implements PushMessageHandler {
public static String TAG = "Mars.Sample.MainService";
private Thread recvThread;
private LinkedBlockingQueue<PushMessage> pushMessages = new LinkedBlockingQueue<>();
private BusinessHandler[] handlers = new BusinessHandler[]{
new MessageHandler(),
new StatisticHandler()
};
public MainService() {
this.start();
}
public void start() {
if (recvThread == null) {
recvThread = new Thread(pushReceiver, "PUSH-RECEIVER");
recvThread.start();
}
}
private final Runnable pushReceiver = new Runnable() {
@Override
public void run() {
while (true) {
try {
PushMessage pushMessage = pushMessages.take();
if (pushMessage != null) {
for (BusinessHandler handler : handlers) {
if (handler.handleRecvMessage(pushMessage)) {
break;
}
}
}
} catch (InterruptedException e) {
e.printStackTrace();
try {
Thread.sleep(500);
} catch (InterruptedException e1) {
//
}
}
}
}
};
@Override
public void process(PushMessage message) {
pushMessages.offer(message);
}
}
1.启动了一个接受者线程pushReceiver;
2.pushReceiver从LinkedBlockingQueue<PushMessage>的pushMessages中不断获取message,然后通知到handlers的每个成员中,handlers是这样定义的:
private BusinessHandler[] handlers = new BusinessHandler[]{
new MessageHandler(),
new StatisticHandler()
};
继续往下看MessageHandler:
/mars-master/samples/android/marsSampleChat/app/src/main/java/com/tencent/mars/sample/core/MessageHandler.java
public class MessageHandler extends BusinessHandler{
public static String TAG = MessageHandler.class.getSimpleName();
@Override
public boolean handleRecvMessage(PushMessage pushMessage) {
switch (pushMessage.cmdId) {
case Constants.PUSHCMD:
{
try {
Messagepush.MessagePush message = Messagepush.MessagePush.parseFrom(pushMessage.buffer);
Intent intent = new Intent();
intent.setAction(Constants.PUSHACTION);
intent.putExtra("msgfrom", message.from);
intent.putExtra("msgcontent", message.content);
intent.putExtra("msgtopic", message.topic);
SampleApplicaton.getContext().sendBroadcast(intent);
} catch (InvalidProtocolBufferNanoException e) {
Log.e(TAG, "%s", e.toString());
}
}
return true;
default:
break;
}
return false;
}
}
如果是Constants.PUSHCMD类型的message,那么就发送一个广播。这个广播实际上会由Mars核心部分接收到,但是传递的intent参数其实没有意义,核心部分只是根据每次的pushcmd进行网络状态的检查而已,这些后话我们在分析核心的时候再说。
另外一个StatisticHandler,是专用于统计的,我们暂时不去关注。
让我们回到ConversationActivity,在MainService的new之后,会调用MarsServiceProxy.setOnPushMessageListener多次,设置监听,我们来看看MarsServiceProxy里面如何运转:
public static void setOnPushMessageListener(int cmdId, PushMessageHandler pushMessageHandler) {
if (pushMessageHandler == null) {
inst.pushMessageHandlerHashMap.remove(cmdId);
} else {
inst.pushMessageHandlerHashMap.put(cmdId, pushMessageHandler);
}
}
添加了监听到一个支持高并发的hashmap中:
private ConcurrentHashMap<Integer, PushMessageHandler> pushMessageHandlerHashMap = new ConcurrentHashMap<>();
private MarsPushMessageFilter filter = new MarsPushMessageFilter.Stub() {
@Override
public boolean onRecv(int cmdId, byte[] buffer) throws RemoteException {
PushMessageHandler handler = pushMessageHandlerHashMap.get(cmdId);
if (handler != null) {
Log.i(TAG, "processing push message, cmdid = %d", cmdId);
PushMessage message = new PushMessage(cmdId, buffer);
handler.process(message);
return true;
} else {
Log.i(TAG, "no push message listener set for cmdid = %d, just ignored", cmdId);
}
return false;
}
};
可以看到,这里创建了一个filter,这个filter在接收到一个cmd后,根据id查找到PushMessageHandler,然后调用hander.process,传递参数PushMessage,这个PushMessage实际上又是由cmdid和buffer组成的。这里的cmdid理解为一个指令的类型id即可。再到MainService中的process,其实就是加入PushMessage的一个队列中等待处理。
回来看filter在何时调用的吧。
首先在MarsServiceProxy的onServiceConnected:
@Override
public void onServiceConnected(ComponentName componentName, IBinder iBinder) {
Log.d(TAG, "remote mars service connected");
try {
service = MarsService.Stub.asInterface(iBinder);
service.registerPushMessageFilter(filter);
service.setAccountInfo(accountInfo.uin, accountInfo.userName);
} catch (Exception e) {
service = null;
}
}
看到了吧,将这个filter注册到了服务中。来吧,MarsServiceNative的registerPushMessageFilter:
@Override
public void registerPushMessageFilter(MarsPushMessageFilter filter) throws RemoteException {
stub.registerPushMessageFilter(filter);
}
到了MarsServiceStub里:
@Override
public void registerPushMessageFilter(MarsPushMessageFilter filter) throws RemoteException {
filters.remove(filter);
filters.add(filter);
}
加入了filters的队列中,然后在onPush中有所调用:
@Override
public void onPush(int cmdid, byte[] data) {
for (MarsPushMessageFilter filter : filters) {
try {
if (filter.onRecv(cmdid, data)) {
break;
}
} catch (RemoteException e) {
//
}
}
}
这里调用了每个filter的onRecv方法,这样就和上面的串起来了吧。那么何时调用的这个onPush呢,答案在核心mars部分的StnLogic里面,这里规定了一个ICallBack,里面有onPush,会在适当的时候调用。具体的内容我会在后面的mars核心层分析的时候指出。
总结一下:
MainService在一开始启动,并且启动专门的线程处理接收到的pushMessage,处理的过程就是调用之前已经准备好的一个handler的队列的每个项目的handleRecvMessage,其中的MessageHandler会发送广播通知mars有pushcmd来了。
另一方面,MainService提供process调用向message队列中加入新项目。这个加入的过程调用在MarsServiceProxy中进行,内部生成了一个filter过滤器,并将其注册到服务MarsServiceNative中,MarsServiceNative其实也是走的MarsServiceStub,在他里面维护的filter的队列,并且MarsServiceStub还是底层核心Mars的回调监听者,在onPush到来的时候,依次调用filter队列中的各个项目的onRecv方法来实现通知。在filter的onRecv方法中就实现了handler.process(message),通知到了handler。
现在对于这部分应该比较明晰了吧。准备下一篇进行Mars的核心层分析吧。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。