项目中有需求将Hive的表存储在HBase中。通过Spark访问Hive表,通过一定ETL过程生成HFile,并通知HBase进行bulk load。实测这是导数最快的手段。
环境:
CDH : 5.7.0
Hadoop : 2.6.0-cdh5.7.0
Spark : 1.6.0-cdh5.7.0
Hive : 1.1.0-cdh5.7.0
HBase : 1.2.0-cdh5.7.0
pom
Hadoop项目里面,最坑的就是依赖关系复杂,然后经常会发现一些冲突包。。。下面是呕心沥血整理出无冲突的POM。
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>your.group.id</groupId>
<artifactId>your.artifact.id</artifactId>
<version>your.version</version>
<packaging>jar</packaging>
<properties>
<slf4j.version>1.7.5</slf4j.version>
<scala.version>2.10</scala.version>
<mysql.version>5.1.38</mysql.version>
<logback.version>1.0.13</logback.version>
<!-- Hadoop eco base version -->
<hadoop.version>2.6.0</hadoop.version>
<hbase.version>1.2.0</hbase.version>
<zookeeper.version>3.4.5</zookeeper.version>
<spark.version>1.6.0</spark.version>
<hive.version>1.1.0</hive.version>
<!-- Hadoop eco cdh version -->
<cdh.version>5.7.0</cdh.version>
<hadoop-cdh.version>${hadoop.version}-cdh${cdh.version}</hadoop-cdh.version>
<hbase-cdh.version>${hbase.version}-cdh${cdh.version}</hbase-cdh.version>
<zookeeper-cdh.version>${zookeeper.version}-cdh${cdh.version}</zookeeper-cdh.version>
<spark-cdh.version>${spark.version}-cdh${cdh.version}</spark-cdh.version>
<hive-cdh.version>${hive.version}-cdh${cdh.version}</hive-cdh.version>
<!-- Hadoop eco current version -->
<hadoop.current.version>${hadoop-cdh.version}</hadoop.current.version>
<hbase.current.version>${hbase-cdh.version}</hbase.current.version>
<zookeeper.current.version>${zookeeper-cdh.version}</zookeeper.current.version>
<spark.current.version>${spark-cdh.version}</spark.current.version>
<hive.current.version>${hive-cdh.version}</hive.current.version>
</properties>
<dependencies>
<!-- zookeeper -->
<dependency>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
<version>${zookeeper.current.version}</version>
<exclusions>
<exclusion>
<groupId>org.jboss.netty</groupId>
<artifactId>netty</artifactId>
</exclusion>
</exclusions>
<!--<exclusions>-->
<!--<exclusion>-->
<!--<groupId>log4j</groupId>-->
<!--<artifactId>log4j</artifactId>-->
<!--</exclusion>-->
<!--<exclusion>-->
<!--<groupId>org.slf4j</groupId>-->
<!--<artifactId>slf4j-log4j12</artifactId>-->
<!--</exclusion>-->
<!--</exclusions>-->
</dependency>
<!-- Hadoop & HBase -->
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty.orbit</groupId>
<artifactId>javax.servlet</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>${hadoop.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty.orbit</groupId>
<artifactId>javax.servlet</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>${hbase.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>${hbase.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>javax.servlet</groupId>
<artifactId>*</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty.orbit</groupId>
<artifactId>javax.servlet</artifactId>
</exclusion>
<exclusion>
<artifactId>servlet-api-2.5</artifactId>
<groupId>org.mortbay.jetty</groupId>
</exclusion>
</exclusions>
</dependency>
<!-- Spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>apache-log4j-extras</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_${scala.version}</artifactId>
<version>${spark.current.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-flume_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-yarn_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-assembly_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-launcher_${scala.version}</artifactId>
<version>${spark.current.version}</version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<!-- hive -->
<!--<dependency>-->
<!--<groupId>org.spark-project.hive</groupId>-->
<!--<artifactId>hive-cli</artifactId>-->
<!--<version>${hive.current.version}</version>-->
<!--<exclusions>-->
<!--<exclusion>-->
<!--<groupId>org.jboss.netty</groupId>-->
<!--<artifactId>netty</artifactId>-->
<!--</exclusion>-->
<!--</exclusions>-->
<!--</dependency>-->
<!-- log for java-->
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>${slf4j.version}</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>log4j-over-slf4j</artifactId>
<version>${slf4j.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>${logback.version}</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-core</artifactId>
<version>${logback.version}</version>
</dependency>
<!-- jdbc -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>${mysql.version}</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<encoding>utf-8</encoding>
<showDeprecation>true</showDeprecation>
<showWarnings>true</showWarnings>
</configuration>
</plugin>
</plugins>
</build>
<repositories>
<repository>
<id>aliyun-r</id>
<name>aliyun maven repo remote</name>
<url>http://maven.aliyun.com/nexus/content/repositories/central/</url>
</repository>
<repository>
<id>cloudera</id>
<url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
</repository>
</repositories>
</project>
要领
1.通过Spark访问Hive的表,导为DataFrame
这里要求你的Spark环境支持访问Hive。CDH已经帮你做好了
当然你不需要访问Hive则无视
2. 将DataFrame flatMap为 JavaRDD<ImmutableBytesWritable, KeyValue>
ImmutableBytesWritable其实是行键的包装类,KeyValue则是HBase里的一个单元格(Cell)
所以应该是有多个RDD记录共同构建成逻辑上HBase的一行
重点!!!!
生成HFile要求Key有序。开始是以为只要行键有序,即map之后,sortByKey就ok,后来HFileOutputFormat一直报后值比前值小(即未排序)。翻了很多鬼佬网站,才发现,这里的行键有序,是要求rowKey+列族+列名整体有序!!!
也就是说,你要管好列族+列名的排序。。。
(这就是折磨我一整个通宵的天坑啊啊啊啊。。。。)
demo: 现在一个表有两个列族 a 有列 a1 a2 , b 有列 b1 b2
flatMap的时候,行键可以不管,输出的时候必须保证:
rowKey a a1 值
rowKey a a2 值
rowKey b b1 值
rowKey b b2 值
如果
rowKey a a2 值
rowKey a a1 值
rowKey b b2 值
rowKey b b1 值
则GG思密达(巨坑!)
行键再通过rdd.sortByKey() 以实现整体有序
3. HBase API对HBase进行操作,要以hbase用户身份进行。
这点可以通过
System.setProperty("user.name","hbase");
System.setProperty("HADOOP_USER_NAME", "hbase");
来实现,也可以以hbase用户身份进行spark-submit。我调试是在windows下直接idea debug,所以就酱。
4. 把Hadoop/Hive/HBase的相关配置xml添加到resources目录
这样可以避免各种显式的在代码里进行配置
代码
根据自己需要进行修改
public static void main(String args[]) throws Exception {
String ip = "your.ip";
String hdfsOutputDir = "/tmp/bulkload/" + System.currentTimeMillis(); // saveAsNewAPIHadoopFile 要求HDFS目录是不存在的,它自己创建
System.setProperty("user.name","hbase");
System.setProperty("HADOOP_USER_NAME", "hbase");
System.setProperty("SPARK_LOCAL_HOSTNAME", ip);
Class<?> classess[] = {
ImmutableBytesWritable.class,
KeyValue.class,
Put.class,
ImmutableBytesWritable.Comparator.class
};
SparkConf sparkConf = new SparkCont().setAppName("")
.set("spark.sql.hive.metastore.jars", "builtin")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.set("spark.kryo.referenceTracking", "false")
.registerKryoClasses(classess); // 必须要用Kryo来序列化这些没实现序列化接口的类,否则你懂的
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
HiveContext hctx = new HiveContext(ctx);
hctx.sql("use YOUR_HIVE_DATABASE");
String tableName = "YOUR_HIVE_TABLE";
DataFrame table = hctx.table(tableName);
JavaPairRDD<ImmutableBytesWritable, KeyValue> hbaseData = table.limit(1000).javaRDD().flatMapToPair(new PairFlatMapFunction<Row, ImmutableBytesWritable, KeyValue>() {
private static final long serialVersionUID = 3750223032740257913L;
@Override
public Iterable<Tuple2<ImmutableBytesWritable, KeyValue>> call(Row row) throws Exception {
List<Tuple2<ImmutableBytesWritable, KeyValue>> kvs = new ArrayList<>();
for(xxxx) { // 你的逻辑
// 在这里控制 列族+列名的排序
kvs.add(new Tuple2<>(rk, new KeyValue(rkBytes, "a".getBytes(), "a1".getBytes(),value)));
kvs.add(new Tuple2<>(rk, new KeyValue(rkBytes, "a".getBytes(), "a2".getBytes(),value)));
kvs.add(new Tuple2<>(rk, new KeyValue(rkBytes, "b".getBytes(), "b1".getBytes(),value)));
kvs.add(new Tuple2<>(rk, new KeyValue(rkBytes, "b".getBytes(), "b2".getBytes(),value)));
}
return kvs;
}
}).sortByKey(); // 这里让Spark去控制行键的排序
Configuration conf = HBaseConfiguration.create();
conf.set(TableOutputFormat.OUTPUT_TABLE,"your.hbase.table");
Job job = Job.getInstance();
job.setMapOutputKeyClass(ImmutableBytesWritable.class);
job.setMapOutputValueClass(KeyValue.class);
Connection conn = ConnectionFactory.createConnection(conf);
TableName hbTableName = TableName.valueOf("your.hbase.namespace".getBytes(), "your.hbase.table".getBytes());
HRegionLocator regionLocator = new HRegionLocator(hbTableName, (ClusterConnection) conn);
Table realTable = conn.getTable(hbTableName);
HFileOutputFormat2.configureIncrementalLoad(job,realTable,regionLocator);
hbaseData.saveAsNewAPIHadoopFile(hdfsOutputDir,ImmutableBytesWritable.class,KeyValue.class,HFileOutputFormat2.class,job.getConfiguration());
// bulk load start
LoadIncrementalHFiles loader = new LoadIncrementalHFiles(conf);
Admin admin = conn.getAdmin();
loader.doBulkLoad(new Path(hdfsOutputDir),admin,realTable,regionLocator);
ctx.stop();
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。