写在最前面
导师贪腐出逃美国,两年未归,可怜了我。拿了小米和美团的offer,要被延期,offer失效,工作重新找。把准备过程纪录下来,共勉。
二叉树的基础
结点定义
public class TreeNode{
int val;
TreeNode left;
TreeNode right;
public TreeNode(int val){
this.val = val;
}
}
二叉树的遍历
前序遍历
-
前序遍历,递归法
public static void preorderTraversalRec(TreeNode root) { if(root == null){ return; } System.out.print(root.val + " "); preorderTraversalRec(root.left); preorderTraversalRec(root.right); }
-
前序遍历,迭代法
思路:借助一个栈public static void preorderTraversal(TreeNode root) { if(null == root){ return; } Stack<TreeNode> stack = new Stack<>(); stack.push(root); while(!stack.empty()){ TreeNode cur = stack.pop(); System.out.println(cur.val); //后入先出,因而先压右结点,再压左结点 if(null != cur.right){ stack.push(cur.right); } if(null != cur.left){ stack.push(cur.left); } } }
中序遍历
-
中序遍历,递归法
public static void inorderTraversalRec(TreeNode root) { if(null == root){ return; } inorderTraversalRec(root.left); System.out.print(root.val + " "); inorderTraversalRec(root.right); }
-
中序遍历,迭代法
public static void inorderTraversal(TreeNode root) { if(null == root){ return; } Stack<TreeNode> stack = new Stack<>(); TreeNode cur = root; while(true){ while(cur != null){ stack.push(cur); cur = cur.left; } if(stack.empty()){ break; } cur = stack.pop(); System.out.print(cur.val + " "); cur = cur.right; } }
后序遍历
-
后序遍历,递归法
public static void postorderTraversalRec(TreeNode root) { if(null == root){ return; } postorderTraversalRec(root.left); postorderTraversalRec(root.right); System.out.print(root.val + " "); }
-
后序遍历,迭代法
public static void postorderTraversal(TreeNode root){ if(null == root){ return; } Stack<TreeNode> s = new Stack<TreeNode>(); Stack<TreeNode> output = new Stack<>(); s.push(root); while(!s.empty()){ TreeNode cur = s.pop(); output.push(cur); if(cur.left != null){ s.push(cur.left); } if(cur.right != null){ s.push(cur.right); } } while(!output.empty()){ System.out.print(output.pop().val + " "); } }
-
分层遍历
public static void levelTraversal(TreeNode root) { if(null == root){ return; } Queue<TreeNode> queue = new LinkedList<>(); queue.push(root); while(!queue.empty()){ TreeNode cur = queue.removeFirst(); System.out.print(cur.val + " "); if(cur.left != null){ queue.add(cur.left); } if(cur.right != null){ queue.add(cur.right); } } }
求二叉树结点的个数
-
递归解法 时间复杂度O(n)
public static int getNodeNumRec(TreeNode root){ if(null != root){ return 0; } return getNodeNumRec(root.left) + getNodeNumRec(root.right) + 1; }
-
迭代解法 时间复杂度O(n)
思路:与层级遍历相同,遍历的过程中纪录结点数public static int getNodeNum(TreeNode root){ if(null != root){ return 0; } int count = 1; Queue<TreeNode> queue = LinkedList<>(); queue.add(root); while(!queue.empty()){ TreeNode cur = queue.remove(); if(cur.left != null){ queue.add(cur.left); count++; } if(cur.right != null){ queue.add(cur.right); count++; } } return count; }
求二叉树的深度(高度)
-
递归解法 时间复杂度O(n)
public static int getDepthRec(TreeNode root) { if(null != root){ return 0; } int leftDepth = getDepthRec(root.left); int rightDepth = getDepthRec(root.right); return Math.max(leftDepth, rightDepth) + 1; }
-
迭代解法 时间复杂度O(n)
public static int getDepth(TreeNode root){ if(null != root){ return 0; } int depth = 0; int curLevelNodes = 1; int nextLevelNodes = 0; Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); while(!queue.empty()){ TreeNode cur = queue.remove(); curLevelNodes--; if(cur.left != null){ nextLevelNodes++; queue.add(cur.left); } if(cur.right != null){ nextLevelNodes++; queue.add(cur.right); } if(curLevelNodes == 0){ depth++; curLevelNodes = nextLevelNodes; nextLevelNodes = 0; } } return depth; }
求二叉树第K层的节点个数
-
递归解法
思路:求以root为根的k层节点数目 等价于 求以root左孩子为根的k-1层(因为少了root那一层)节点数目 加上 以root右孩子为根的k-1层(因为少了root那一层)节点数目public static int getNodeNumKthLevelRec(TreeNode root, int k) { if(null != root || k < 0){ return 0; } if(k == 1){ return 1; } int leftNodeNumKth = getNodeNumKthLevelRec(root.left, k - 1); int rightNodeNumKth = getNodeNumKthLevelRec(root.right, k - 1); return leftNodeNumKth + rightNodeNumKth; }
-
迭代法
思路:与求解树深度的解法相同,需要public static int getNodeNumKthLevel(TreeNode root, int k){ if(root == null || k < 0){ return 0; } Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); int curLevelNodes = 1; int nextLevelNodes = 0; while(!queue.empty && k > 0){ TreeNode cur = queue.remove(); curLevelNodes--; if(cur.left != null){ queue.add(cur.left); nextLevelNodes++; } if(cur.right != null){ queue.add(cur.right); nextLevelNodes++; } if(curLevelNodes == 0){ curLevelNodes = nextLevelNodes; nextLevelNodes = 0; k--; } } return curLevelNodes; }
求二叉树中叶子节点的个数
-
迭代法
public static int getNodeNumLeaf(TreeNode root) { if(root == null){ return 0; } Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); int leafNodeNum = 0; while(!queue.empty()){ TreeNode cur = queue.remove(); if(cur.left != null){ queue.add(cur.left); } if(cur.right != null){ queue.add(cur.right); } if(cur.left == null && cur.right = null){ leafNodeNum++; } } return leafNodeNum; }
两个二叉树之间的关系
判断两棵二叉树是否相同的树。
-
递归法
public static boolean isSameRec(TreeNode r1, TreeNode r2) { if(r1 == null && r2 == null){ return true; } if(r1 == null || r2 == null){ return false; } if(r1.val != r2.val){ return false; } boolean leftRes = isSameRec(r1.left, r2.left); boolean rightRes = isSameRec(r1.right, r2.right); return leftRes && rightRes; }
-
迭代法
思路:遍历一遍,比对即可public static boolean isSame(TreeNode r1, TreeNode r2) { if(r1 == null && r2 == null){ return true; } if(r1 == null || r2 == null){ return false; } Stack<TreeNode> s1 = new Stack<>(); Stack<TreeNode> s2 = new Stack<>(); s1.push(r1); s2.push(r2); while(!s1.empty() && !s2.empty()){ TreeNode n1 = s1.pop(); TreeNode n2 = s2.pop(); if(n1 == null && n2 == null){ continue; }else if(n1 != null && n2 != null && n1.val == n2.val){ s1.push(n1.right); s1.push(n1.left); s2.push(n2.right); s2.push(n2.left); }else{ return false; } } return true; }
判断二叉树是不是平衡二叉树
-
递归解法
思路: (1)如果二叉树为空,返回真 (2)如果二叉树不为空,如果左子树和右子树都是AVL树并且左子树和右子树高度相差不大于1,返回真,其他返回假
public static boolean isAVLRec(TreeNode root) { if(root == null){ return true; } if(Math.abs(getDepthRec(root.left) - getDepthRec(root.right)) > 1){ return false; } return isAVLRec(root.left) && isAVLRec(root.right); }
树的镜像
判断两个树是否互相镜像
public static boolean isMirrorRec(TreeNode r1, TreeNode r2){
if(r1 == null && r2 == null){
return true;
}
if(r1 == null || r2 == null){
return false;
}
if(r1.val != r2.val){
return false;
}
return isMirrorRec(r1.left, r2.right) && isMirrorRec(r1.right, r2.left);
}
求树的镜像
-
递归解法
(1)如果二叉树为空,返回空
(2)如果二叉树不为空,求左子树和右子树的镜像,然后交换左子树和右子树-
破坏原来的树
public static TreeNode mirrorRec(TreeNode root) { if(root == null){ return null; } TreeNode left = mirrorRec(root.left); TreeNode right = mirrorRec(root.right); root.left = right; root.right = left; return root; }
2.保存原来的树
public static TreeNode mirrorCopyRec(TreeNode root) { if(root == null){ return null; } TreeNode newRoot = new TreeNode(root.val); newRoot.left = mirrorCopyRec(root.right); newRoot.right = mirrorCopyRec(root.left); return newRoot; }
-
-
迭代解法
- 破坏原来的树
public static void mirror(TreeNode root) { if(root == null){ return; } Stack<TreeNode> stack = new Stack<TreeNode>(); stack.push(root); while(!stack.empty()){ TreeNode cur = stack.pop(); TreeNode tmp = cur.left; cur.left = cur.right; cur.right = tmp; if(cur.left != null){ stack.push(cur.left); } if(cur.right != null){ stack.push(cur.right); } } }
- 不能破坏原来的树,返回一个新的镜像树
public static TreeNode mirrorCopy(TreeNode root){ if(root == null){ return null; } Stack<TreeNode> stack = new Stack<>(); Stack<TreeNode> newStack = new Stack<>(); stack.push(root); TreeNode newRoot = new TreeNode(root.val); newStack.push(newRoot); while(!stack.empty()){ TreeNode cur = stack.pop(); TreeNode newCur = newStack.pop(); if(cur.left != null){ stack.push(cur.left); newCur.right = new TreeNode(cur.left.val); newStack.push(newCur.right); } if(cur.right != null){ stack.push(cur.right); newCur.left = new TreeNode(cur.right.val); newStack.push(newCur.left); } } return newRoot; }
求二叉树中两个节点的最低公共祖先节点
-
递归法
思路:1. 如果其中一个结点为根结点,则返回根结点- 如果一个左子树找到,一个在右子树找到,则说明root是唯一可能的最低公共祖先
- 其他情况是要不然在左子树要不然在右子树
public static TreeNode getLastCommonParentRec(TreeNode root, TreeNode n1, TreeNode n2) { if (root == null || n1 == null || n2 == null) { return null; } if(root.equals(n1) || root.equals(n2)){ return root; } TreeNode commonInLeft = getLastCommonParentRec(root.left, n1, n2); TreeNode commonInRight = getLastCommonParentRec(root.right, n1, n2); if(commonInLeft != null && commonInRight != null){ return root; } if(commonInLeft == null){ return commonInRight; } if(commonInRight == null){ return commonInLeft; } return root; }
-
迭代法
public static TreeNode getLastCommonParent(TreeNode root, TreeNode n1, TreeNode n2){ if(root == null || n1 == null || n2 == null){ return null; } List<TreeNode> list1= new ArrayList<>(); List<TreeNode> list2 = new ArrayList<>(); boolean res1 = getNodePath(root, n1, list1); boolean res2 = getNodePath(root, n2, list2); if(!res1 || !res2){ return null; } Iterator<TreeNode> iter1 = list1.iterator(); Iterator<TreeNode> iter2 = list2.iterator(); TreeNode last = null; while(iter1.hasNext() && iter2.hasNext()){ TreeNode tmp1 = iter1.next(); TreeNode tmp2 = iter2.next(); if(tmp1 == tmp2){ last = tmp1; }else{ break; } } return last; } private static boolean getNodePath(TreeNode root, TreeNode n, List<TreeNode> path){ if(root == null){ return false; } path.add(root); if(root == n){ return true; } boolean found = false; found = getNodePath(root.left, n, path); if(!found){ found = getNodePath(root.right, n, path); } if(!found){ path.remove(root); } return found; }
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。