背景介绍
从事开发到了一定阶段,想要提高就必须搞明白系统的一些工作原理。为什么?因为只有明白了这些,你才能针对平台的特性写出优质的代码。当遇到棘手的问题时,你才能更快速的结合系统原理去寻找最优解决方案。底层基础决定上层建筑。这个原理在开发中同样适用。我是提倡 回归基础 的。高级的功能总是由最基本的元件构成,就好比为数不多的元素构成了我们难以想象的丰富的物质世界一样。只有掌握了最根本的内容,才能促使你爆发出难以想象的创造力来!
重视基础,回归基础。回到最初,去探寻灵感。 愿与君共勉✌️!
一张图明白Activity的启动流程
本篇主要讲的是从一个App启动,到Activity执行onCreate()的流程。后面关于Activity的生命周期相信大家基本都耳熟能详了。
上图中我把涉及到的类名方法命均列出来了,你可以看着流程,打开源码跟着过一遍。相信在过完一遍之后,在今后的开发中你会更加自信!
上图乍一看可能感觉有些眼花缭乱,但请不要惧怕。其实根本就没什么东西,你只需要从蓝色箭头开始看下去,会发现一下就看完了。在结合下面简要的分析,3分钟内你就能搞明白Activity的启动流程。
关于Activity的启动,我在【惊天秘密!从Thread开始,揭露Android线程通讯的诡计和主线程的阴谋】http://www.jianshu.com/p/8862bd2b6a29 一文中有提到过。这篇文章主要讲的是Thread线程到底是个什么东西,以及Android中的消息机制。感兴趣可以点链接看一看。
一切从main()方法开始
Android中,一个应用程序的开始可以说就是从ActivityThread.java中的main()方法开始的。都是学过Java的人,想必也都知道Java的程序入口就是main()方法。从这点而言,我们可以把它想成是一个Java程序(注意,不是说Android是个Java程序哦)去理解。
从上图可以看到,main()方法中主要做的事情有:
初始化主线程的Looper、主Handler。并使主线程进入等待接收Message消息的无限循环状态。关于Android的Handler机制,可以参考一下我上面提到的文章:
【惊天秘密!从Thread开始,揭露Android线程通讯的诡计和主线程的阴谋】http://www.jianshu.com/p/8862bd2b6a29
下面是main()方法中比较关键的代码:
public static void main(String[] args){
...
Looper.prepareMainLooper();
//初始化Looper
...
ActivityThread thread = new ActivityThread();
//实例化一个ActivityThread
thread.attach(false);
//这个方法最后就是为了发送出创建Application的消息
...
Looper.loop();
//主线程进入无限循环状态,等待接收消息
}
2.调用attach()方法,主要就是为了发送出初始化Application的消息。这个流程说长不长,说短不短。下文会再捋一捋。
创建Application的消息是如何发送的呢?
上面提到过,ActivityThread的attach()方法最终的目的是发送出一条创建Application的消息——H.BIND_APPLICATION,到主线程的主Handler中。那我们来看看attach()方法干了啥。
attach()关键代码:
public void attach(boolean system){
...
final IActivityManager mgr = ActivityManagerNative.getDefault();
//获得IActivityManager实例,下面会看看它是个啥
try {
mgr.attachApplication(mAppThread);
//看见没?关键啊。mAppThread这个参数下面也会说一下
} catch (RemoteException ex) {
throw ex.rethrowFromSystemServer();
}
...
}
莫慌莫慌,下面看看上面出现的两个对象是个啥。
IActivityManager mgr是个啥?
从上图也可以看到,IActivityManager是一个接口,当我们调用ActivityManagerNative.getDefault()
获得的实际是一个代理类的实例——ActivityManagerProxy,这个东西实现了IActivityManager接口。打开源码你会发现,ActivityManagerProxy是ActivityManagerNative的一个内部类。可以看出,Android团队在设计的过程中是实践了最小惊异原则的,就是把相关的东西尽量放在一起。那么既然是个代理类,它究竟代理了谁?代码里看看喽。
下面这个代码稍微有点绕啊!老哥,稳住!
先看ActivityManagerProxy的构造函数:
public ActivityManagerProxy(IBinder remote) {
mRemote = remote;
}
这个构造函数非常的简单。首先它需要一个IBinder参数,然后赋值给mRemote变量。这个mRemote显然是ActivityManagerNative的成员变量。但对它的操作是由ActivityManagerProxy来代理间接进行的。这样设计的好处是保护了mRemote,并且能够在操作mRemote前执行一些别的事务,并且我们是以IActivityManager的身份来进行这些操作的!这就非常巧妙了。
那么这个构造函数是在那调用的呢?
static public IActivityManager asInterface(IBinder obj) {
if (obj == null) {
return null;
}
IActivityManager in =
(IActivityManager)obj.queryLocalInterface(descriptor);
//先检查一下有没有
if (in != null) {
return in;
}
...
return new ActivityManagerProxy(obj);
//这个地方调用了构造函数
}
上面这个方法是ActivityManagerNative中的一个静态方法,它会调用到ActivityManagerProxy的构造方法。然而,这个静态方法也需要一个IBinder作为参数!老夫被绕晕了。但是不怕,咱们继续往找!
getDefault()获取到的静态常量gDefault
private static final Singleton<IActivityManager> gDefault =
new Singleton<IActivityManager>() {
protected IActivityManager create() {
IBinder b = ServiceManager.getService("activity");
//重点啊!IBinder实例就是在这里获得的。
...
IActivityManager am = asInterface(b);
//调用了上面的方法。
...
return am;
}
};
这是ActivityManagerNative的静态常量,它是一个单例。在其中终于获得了前面一直在用的IBinder实例。
IBinder b = ServiceManager.getService("activity");
试着在上图中找到对应位置。
这里是通过ServiceManager获取到IBinder实例的。如果你以前了解AIDL通讯流程的话。这可能比较好理解一点,这只是通过另一种方式获取IBinder实例罢了。获取IBinder的目的就是为了通过这个IBinder和ActivityManager进行通讯,进而ActivityManager会调度发送H.BIND_APPLICATION即初始化Application的Message消息。如果之前没接触过Binder机制的话,只需知道这个目的就行了。我后面会写一篇专门介绍Android中Binder机制的文章。当然,你也可以参考一下罗大的系列文章,写的很详细,非常的很赞 `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。