特点:
Spark Streaming能够实现对实时数据流的流式处理,并具有很好的可扩展性、高吞吐量和容错性。
Spark Streaming支持从多种数据源提取数据,如:Kafka、Flume、Twitter、ZeroMQ、Kinesis以及TCP套接字,并且可以提供一些高级API来表达复杂的处理算法,如:map、reduce、join和window等。
Spark Streaming支持将处理完的数据推送到文件系统、数据库或者实时仪表盘中展示。
可以将Spark的机器学习(machine learning) 和 图计算(graph processing)的算法应用于Spark Streaming的数据流当中。
下图展示了Spark Streaming的内部工作原理。Spark Streaming从实时数据流接入数据,再将其划分为一个个小批量供后续Spark engine处理,所以实际上,Spark Streaming是按一个个小批量来处理数据流的。
Spark Streaming为这种持续的数据流提供了的一个高级抽象,即:discretized stream(离散数据流)或者叫DStream。DStream既可以从输入数据源创建得来,如:Kafka、Flume或者Kinesis,也可以从其他DStream经一些算子操作得到。其实在内部,一个DStream就是包含了一系列RDDs。
入门实例分析
SparkConf conf = new SparkConf().setAppName("stream1").setMaster("local[2]");
JavaStreamingContext jsc = new JavaStreamingContext(conf, Durations.seconds(1));
JavaReceiverInputDStream<String> lines = jsc.socketTextStream("localhost", 9999);
JavaPairDStream<String, Long> pairs=
lines.flatMap((str)->Arrays.asList(str.split(" ")).iterator())
.mapToPair((str)->new Tuple2<String,Long>(str,1L));
JavaPairDStream<String, Long> res=pairs.reduceByKey((v1,v2)->v1+v2);
res.print();
jsc.start();
try {
jsc.awaitTermination();
} catch (InterruptedException e) {
e.printStackTrace();
}
StreamingContext 是Spark Streaming的入口。并将批次间隔设为1秒。
利用这个上下文对象(StreamingContext),我们可以创建一个DStream,该DStream代表从前面的TCP数据源流入的数据流,同时TCP数据源是由主机名(如:hostnam)和端口(如:9999)来描述的。
这里的 lines 就是从数据server接收到的数据流。其中每一条记录都是一行文本。接下来,我们就需要把这些文本行按空格分割成单词。
flatMap 是一种 “一到多”(one-to-many)的映射算子,它可以将源DStream中每一条记录映射成多条记录,从而产生一个新的DStream对象。在本例中,lines中的每一行都会被flatMap映射为多个单词,从而生成新的words DStream对象。然后,我们就能对这些单词进行计数了。
words这个DStream对象经过map算子(一到一的映射)转换为一个包含(word, 1)键值对的DStream对象pairs,再对pairs使用reduce算子,得到每个批次中各个单词的出现频率。
注意,执行以上代码后,Spark Streaming只是将计算逻辑设置好,此时并未真正的开始处理数据。要启动之前的处理逻辑,我们还需要如下调用:
ssc.start() // 启动流式计算
ssc.awaitTermination() // 等待直到计算终止
首先,你需要运行netcat(Unix-like系统都会有这个小工具),将其作为data server
$ nc -lk 9999
然后,执行程序. 现在你尝试可以在运行netcat的终端里敲几个单词,你会发现这些单词以及相应的计数会出现在启动Spark Streaming例子的终端屏幕上。
注意,StreamingContext在内部会创建一个 SparkContext 对象
(SparkContext是所有Spark应用的入口,在StreamingContext对象中可以这样访问:ssc.sparkContext
)。
StreamingContext还有另一个构造参数,即:批次间隔,这个值的大小需要根据应用的具体需求和可用的集群资源来确定。
需要关注的重点:
一旦streamingContext启动,就不能再对其计算逻辑进行添加或修改。
一旦streamingContext被stop掉,就不能restart。
单个JVM虚机同一时间只能包含一个active的StreamingContext。
StreamingContext.stop() 也会把关联的SparkContext对象stop掉,如果不想把SparkContext对象也stop掉,可以将StreamingContext.stop的可选参数 stopSparkContext 设为false。
一个SparkContext对象可以和多个StreamingContext对象关联,只要先对前一个StreamingContext.stop(sparkContext=false),然后再创建新的StreamingContext对象即可。
离散数据流 (DStreams)
离散数据流(DStream)是Spark Streaming最基本的抽象。它代表了一种连续的数据流,要么从某种数据源提取数据,要么从其他数据流映射转换而来。DStream内部是由一系列连续的RDD组成的,每个RDD都包含了特定时间间隔内的一批数据
,如下图所示:
任何作用于DStream的算子,其实都会被转化为对其内部RDD的操作。底层的RDD转换仍然是由Spark引擎来计算。DStream的算子将这些细节隐藏了起来,并为开发者提供了更为方便的高级API。
输入DStream和接收器
输入DStream代表从某种流式数据源流入的数据流。在之前的例子里,lines 对象就是输入DStream,它代表从netcat server收到的数据流。每个输入DStream(除文件数据流外)都和一个接收器(Receiver)相关联,而接收器则是专门从数据源拉取数据到内存中的对象。
Spark Streaming主要提供两种内建的流式数据源:
基础数据源(Basic sources): 在StreamingContext API 中可直接使用的源,如:文件系统,套接字连接或者Akka actor。
高级数据源(Advanced sources): 需要依赖额外工具类的源,如:Kafka、Flume、Kinesis、Twitter等数据源。这些数据源都需要增加额外的依赖,详见依赖链接(linking)这一节。
注意,如果你需要同时从多个数据源拉取数据,那么你就需要创建多个DStream对象。多个DStream对象其实也就同时创建了多个数据流接收器。但是请注意,Spark的worker/executor 都是长期运行的,因此它们都会各自占用一个分配给Spark Streaming应用的CPU。
因此,本地运行时,一定要将master设为”local[n]”,其中 n > 接收器的个数。
将Spark Streaming应用置于集群中运行时,同样,分配给该应用的CPU core数必须大于接收器的总数。否则,该应用就只会接收数据,而不会处理数据。
基础数据源
使用ssc.socketTextStream(…) 可以从一个TCP连接中接收文本数据。而除了TCP套接字外,StreamingContext API 还支持从文件或者Akka actor中拉取数据。
文件数据流(File Streams): 可以从任何兼容HDFS API(包括:HDFS、S3、NFS等)的文件系统,创建方式如下:
streamingContext.fileStream<KeyClass, ValueClass, InputFormatClass>(dataDirectory);
Spark Streaming将监视该dataDirectory目录,并处理该目录下任何新建的文件(目前还不支持嵌套目录)。注意:
各个文件数据格式必须一致。
dataDirectory中的文件必须通过moving或者renaming来创建。
一旦文件move进dataDirectory之后,就不能再改动。所以如果这个文件后续还有写入,这些新写入的数据不会被读取。
对于简单的文本文件,更简单的方式是调用 streamingContext.textFileStream(dataDirectory)。
另外,文件数据流不是基于接收器的,所以不需要为其单独分配一个CPU core。
RDD队列数据流(Queue of RDDs as a Stream): 如果需要测试Spark Streaming应用,你可以创建一个基于一批RDD的DStream对象,只需调用 streamingContext.queueStream(queueOfRDDs)。RDD会被一个个依次推入队列,而DStream则会依次以数据流形式处理这些RDD的数据。
自定义数据源
输入DStream也可以用自定义的方式创建。你需要做的只是实现一个自定义的接收器(receiver),以便从自定义的数据源接收数据,然后将数据推入Spark中。 见:http://spark.apache.org/docs/...
接收器可靠性
从可靠性角度来划分,大致有两种数据源。其中,像Kafka、Flume这样的数据源,它们支持对所传输的数据进行确认。系统收到这类可靠数据源过来的数据,然后发出确认信息,这样就能够确保任何失败情况下,都不会丢数据。因此我们可以将接收器也相应地分为两类:
可靠接收器(Reliable Receiver) – 可靠接收器会在成功接收并保存好Spark数据副本后,向可靠数据源发送确认信息。
不可靠接收器(Unreliable Receiver) – 不可靠接收器不会发送任何确认信息。
DStream支持的transformation算子
和RDD类似,DStream也支持从输入DStream经过各种transformation算子映射成新的DStream。
map(func) 返回会一个新的DStream,并将源DStream中每个元素通过func映射为新的元素
flatMap(func) 和map类似,不过每个输入元素不再是映射为一个输出,而是映射为0到多个输出
filter(func) 返回一个新的DStream,并包含源DStream中被func选中(func返回true)的元素
repartition(numPartitions) 更改DStream的并行度(增加或减少分区数)
union(otherStream) 返回新的DStream,包含源DStream和otherDStream元素的并集
count() 返回一个包含单元素RDDs的DStream,其中每个元素是源DStream中各个RDD中的元素个数
reduce(func) 返回一个包含单元素RDDs的DStream,其中每个元素是通过源RDD中各个RDD的元素经func(func输入两个参数并返回一个同类型结果数据)聚合得到的结果。func必须满足结合律,以便支持并行计算。
countByValue() 如果源DStream包含的元素类型为K,那么该算子返回新的DStream包含元素为(K, Long)键值对,其中K为源DStream各个元素,而Long为该元素出现的次数。
reduceByKey(func, [numTasks]) 如果源DStream 包含的元素为 (K, V) 键值对,则该算子返回一个新的也包含(K, V)键值对的DStream,其中V是由func聚合得到的。注意:默认情况下,该算子使用Spark的默认并发任务数(本地模式为2,集群模式下由spark.default.parallelism 决定)。你可以通过可选参数numTasks来指定并发任务个数。
join(otherStream, [numTasks]) 如果源DStream包含元素为(K, V),同时otherDStream包含元素为(K, W)键值对,则该算子返回一个新的DStream,其中源DStream和otherDStream中每个K都对应一个 (K, (V, W))键值对元素。
cogroup(otherStream, [numTasks]) 如果源DStream包含元素为(K, V),同时otherDStream包含元素为(K, W)键值对,则该算子返回一个新的DStream,其中每个元素类型为包含(K, Seq[V], Seq[W])的tuple。
transform(func) 返回一个新的DStream,其包含的RDD为源RDD经过func操作后得到的结果。利用该算子可以对DStream施加任意的操作。
updateStateByKey(func) 返回一个包含新”状态”的DStream。源DStream中每个key及其对应的values会作为func的输入,而func可以用于对每个key的“状态”数据作任意的更新操作。
updateStateByKey算子
updateStateByKey 算子支持维护一个任意的状态
。要实现这一点,只需要两步:
定义状态 – 状态数据可以是任意类型。
定义状态更新函数 – 定义好一个函数,其输入为数据流之前的状态和新的数据流数据,且可其更新步骤1中定义的输入数据流的状态。
在每一个批次数据到达后,Spark都会调用状态更新函数,来更新所有已有key(不管key是否存在于本批次中)的状态。如果状态更新函数返回None,则对应的键值对会被删除。
举例如下。假设你需要维护一个流式应用,统计数据流中每个单词的出现次数。这里将各个单词的出现次数这个整型数定义为状态。我们接下来定义状态更新函数如下:
Function2<List<Integer>, Optional<Integer>, Optional<Integer>> updateFunction =
new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() {
@Override public Optional<Integer> call(List<Integer> values, Optional<Integer> state) {
Integer newSum = ... // add the new values with the previous running count to get the new count
return Optional.of(newSum);
}
};
注意,调用updateStateByKey前需要配置检查点目录. 配置方式见下:
检查点
一般来说Streaming 应用都需要7*24小时长期运行,所以必须对一些与业务逻辑无关的故障有很好的容错(如:系统故障、JVM崩溃等)。对于这些可能性,Spark Streaming 必须在检查点保存足够的信息到一些可容错的外部存储系统中,以便能够随时从故障中恢复回来。所以,检查点需要保存以下两种数据:
元数据检查点(Metadata checkpointing) – 保存流式计算逻辑的定义信息到外部可容错存储系统(如:HDFS)。主要用途是用于在故障后回复应用程序本身(后续详谈)。元数包括:
Configuration – 创建Streaming应用程序的配置信息。
DStream operations – 定义流式处理逻辑的DStream操作信息。
Incomplete batches – 已经排队但未处理完的批次信息。
总之,元数据检查点主要是为了恢复驱动器节点上的故障,而数据或RDD检查点是为了支持对有状态转换操作的恢复。
何时启用检查点
使用了有状态的转换算子(Usage of stateful transformations) – 不管是用了 updateStateByKey 还是用了 reduceByKeyAndWindow(有”反归约”函数的那个版本),你都必须配置检查点目录来周期性地保存RDD检查点。
支持驱动器故障中恢复(Recovering from failures of the driver running the application) – 这时候需要元数据检查点以便恢复流式处理的进度信息。
注意,一些简单的流式应用,如果没有用到前面所说的有状态转换算子,则完全可以不开启检查点。不过这样的话,驱动器(driver)故障恢复后,有可能会丢失部分数据(有些已经接收但还未处理的数据可能会丢失)。不过通常这点丢失时可接受的,很多Spark Streaming应用也是这样运行的。
如何配置检查点
检查点的启用,只需要设置好保存检查点信息的检查点目录即可,一般会会将这个目录设为一些可容错的、可靠性较高的文件系统(如:HDFS、S3等)。
第一种:开发者只需要调用 streamingContext.checkpoint(checkpointDirectory)
。设置好检查点,你就可以使用前面提到的有状态转换算子了。
第二种:如果你需要你的应用能够支持从驱动器故障中恢复,你可能需要重写部分代码,实现以下行为:
如果程序是首次启动,就需要new一个新的StreamingContext,并定义好所有的数据流处理,然后调用StreamingContext.start()。
如果程序是故障后重启,就需要从检查点目录中的数据中重新构建StreamingContext对象。
// Create a factory object that can create and setup a new JavaStreamingContext
JavaStreamingContextFactory contextFactory = new JavaStreamingContextFactory() {
@Override public JavaStreamingContext create() {
JavaStreamingContext jssc = new JavaStreamingContext(...); // new context
JavaDStream<String> lines = jssc.socketTextStream(...); // create DStreams
...
jssc.checkpoint(checkpointDirectory); // set checkpoint directory
return jssc;
}
};
// Get JavaStreamingContext from checkpoint data or create a new one
JavaStreamingContext context = JavaStreamingContext.getOrCreate(checkpointDirectory, contextFactory);
// Do additional setup on context that needs to be done,
// irrespective of whether it is being started or restarted
context. ...
// Start the context
context.start();
context.awaitTermination();
需要注意的是,RDD检查点会增加额外的保存数据的开销。这可能会导致数据流的处理时间变长。
因此,你必须仔细的调整检查点间隔时间。如果批次间隔太小(比如:1秒),那么对每个批次保存检查点数据将大大减小吞吐量。
另一方面,检查点保存过于频繁又会导致血统信息和任务个数的增加,这同样会影响系统性能。
对于需要RDD检查点的有状态转换算子,默认的间隔是批次间隔的整数倍,且最小10秒。开发人员可以这样来自定义这个间隔:
dstream.checkpoint(checkpointInterval)
。一般推荐设为批次间隔时间的5~10倍。
transform算子
transform算子(及其变体transformWith)可以支持任意的RDD到RDD的映射操作。也就是说,你可以用tranform算子来包装任何DStream API所不支持的RDD算子。例如,将DStream每个批次中的RDD和另一个Dataset进行关联(join)操作,这个功能DStream API并没有直接支持。不过你可以用transform来实现这个功能,可见transform其实为DStream提供了非常强大的功能支持。比如说,你可以用事先算好的垃圾信息,对DStream进行实时过滤。
// RDD containing spam information
final JavaPairRDD<String, Double> spamInfoRDD = jssc.sparkContext().newAPIHadoopRDD(...);
JavaPairDStream<String, Integer> cleanedDStream = wordCounts.transform(
new Function<JavaPairRDD<String, Integer>, JavaPairRDD<String, Integer>>() {
@Override public JavaPairRDD<String, Integer> call(JavaPairRDD<String, Integer> rdd) throws Exception {
rdd.join(spamInfoRDD).filter(...); // join data stream with spam information to do data cleaning
...
}
});
注意,这里transform包含的算子,其调用时间间隔和批次间隔是相同的。所以你可以基于时间改变对RDD的操作,如:在不同批次,调用不同的RDD算子,设置不同的RDD分区或者广播变量等。
基于窗口(window)的算子
Spark Streaming同样也提供基于时间窗口
的计算,也就是说,你可以对某一个滑动时间窗内的数据施加特定tranformation算子。如下图所示:
如上图所示,每次窗口滑动时,源DStream中落入窗口的RDDs就会被合并成新的windowed DStream。在上图的例子中,这个操作会施加于3个RDD单元,而滑动距离是2个RDD单元。由此可以得出任何窗口相关操作都需要指定一下两个参数:
(窗口长度)window length – 窗口覆盖的时间长度(上图中为3)
(滑动距离)sliding interval – 窗口启动的时间间隔(上图中为2)
注意,这两个参数都必须是DStream批次间隔(上图中为1)的整数倍.
下面咱们举个例子。假设,你需要每隔10秒统计一下前30秒内的单词计数。为此,我们需要在包含(word, 1)键值对的DStream上,对最近30秒的数据调用reduceByKey算子。不过这些都可以简单地用一个 reduceByKeyAndWindow
搞定。
// Reduce function adding two integers, defined separately for clarity
Function2<Integer, Integer, Integer> reduceFunc = new Function2<Integer, Integer, Integer>() {
@Override public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
};
// 每隔10秒归约一次最近30秒的数据
JavaPairDStream<String, Integer> windowedWordCounts = pairs.reduceByKeyAndWindow(reduceFunc, Durations.seconds(30), Durations.seconds(10));
以下列出了常用的窗口算子。所有这些算子都有前面提到的那两个参数 – 窗口长度 和 滑动距离。
window(windowLength, slideInterval) 将源DStream窗口化,并返回转化后的DStream
countByWindow(windowLength,slideInterval) 返回数据流在一个滑动窗口内的元素个数
reduceByWindow(func, windowLength,slideInterval) 基于数据流在一个滑动窗口内的元素,用func做聚合,返回一个单元素数据流。func必须满足结合律,以便支持并行计算。
reduceByKeyAndWindow(func,windowLength, slideInterval, [numTasks]) 基于(K, V)键值对DStream,将一个滑动窗口内的数据进行聚合,返回一个新的包含(K,V)键值对的DStream,其中每个value都是各个key经过func聚合后的结果。
注意:如果不指定numTasks,其值将使用Spark的默认并行任务数(本地模式下为2,集群模式下由 spark.default.parallelism决定)。当然,你也可以通过numTasks来指定任务个数。reduceByKeyAndWindow(func, invFunc,windowLength,slideInterval, [numTasks]) 和前面的reduceByKeyAndWindow() 类似,只是这个版本会用之前滑动窗口计算结果,递增地计算每个窗口的归约结果。当新的数据进入窗口时,这些values会被输入func做归约计算,而这些数据离开窗口时,对应的这些values又会被输入 invFunc 做”反归约”计算。举个简单的例子,就是把新进入窗口数据中各个单词个数“增加”到各个单词统计结果上,同时把离开窗口数据中各个单词的统计个数从相应的统计结果中“减掉”。不过,你的自己定义好”反归约”函数,即:该算子不仅有归约函数(见参数func),还得有一个对应的”反归约”函数(见参数中的 invFunc)。和前面的reduceByKeyAndWindow() 类似,该算子也有一个可选参数numTasks来指定并行任务数。注意,这个算子需要配置好检查点(checkpointing)才能用。
countByValueAndWindow(windowLength,slideInterval, [numTasks]) 基于包含(K, V)键值对的DStream,返回新的包含(K, Long)键值对的DStream。其中的Long value都是滑动窗口内key出现次数的计数。
和前面的reduceByKeyAndWindow() 类似,该算子也有一个可选参数numTasks来指定并行任务数。
Join相关算子
最后,值得一提的是,你在Spark Streaming中做各种关联(join)操作非常简单。
1、流-流(Stream-stream)关联
一个数据流可以和另一个数据流直接关联。
JavaPairDStream<String, String> stream1 = ...
JavaPairDStream<String, String> stream2 = ...
JavaPairDStream<String, Tuple2<String, String>> joinedStream = stream1.join(stream2);
上面代码中,stream1的每个批次中的RDD会和stream2相应批次中的RDD进行join。同样,你可以类似地使用 leftOuterJoin, rightOuterJoin, fullOuterJoin 等。此外,你还可以基于窗口来join不同的数据流
JavaPairDStream<String, String> windowedStream1 = stream1.window(Durations.seconds(20));
JavaPairDStream<String, String> windowedStream2 = stream2.window(Durations.minutes(1));
JavaPairDStream<String, Tuple2<String, String>> joinedStream = windowedStream1.join(windowedStream2);
2、流-数据集(stream-dataset)关联
这里举个基于滑动窗口的例子。
JavaPairRDD<String, String> dataset = ...
JavaPairDStream<String, String> windowedStream = stream.window(Durations.seconds(20));
JavaPairDStream<String, String> joinedStream = windowedStream.transform(
new Function<JavaRDD<Tuple2<String, String>>, JavaRDD<Tuple2<String, String>>>() {
@Override
public JavaRDD<Tuple2<String, String>> call(JavaRDD<Tuple2<String, String>> rdd) {
return rdd.join(dataset);
}
}
);
在上面代码里,你可以动态地该表join的数据集(dataset)。传给tranform算子的操作函数会在每个批次重新求值,所以每次该函数都会用最新的dataset值,所以不同批次间你可以改变dataset的值。
DStream输出算子
输出算子可以将DStream的数据推送到外部系统,如:数据库或者文件系统。因为输出算子会将最终完成转换的数据输出到外部系统,因此只有输出算子调用时,才会真正触发DStream transformation算子的真正执行(这一点类似于RDD 的action算子)。目前所支持的输出算子如下表:
print() 在驱动器(driver)节点上打印DStream每个批次中的头十个元素。
saveAsTextFiles(prefix, [suffix]) 将DStream的内容保存到文本文件。
每个批次一个文件,各文件命名规则为 “prefix-TIME_IN_MS[.suffix]”saveAsObjectFiles(prefix, [suffix]) 将DStream内容以序列化Java对象的形式保存到顺序文件中。
每个批次一个文件,各文件命名规则为 “prefix-TIME_IN_MS[.suffix]”Python API 暂不支持PythonsaveAsHadoopFiles(prefix, [suffix]) 将DStream内容保存到Hadoop文件中。
每个批次一个文件,各文件命名规则为 “prefix-TIME_IN_MS[.suffix]”Python API 暂不支持PythonforeachRDD(func) 这是最通用的输出算子了,该算子接收一个函数func,func将作用于DStream的每个RDD上。
func应该实现将每个RDD的数据推到外部系统中,比如:保存到文件或者写到数据库中。
注意,func函数是在streaming应用的驱动器进程中执行的,所以如果其中包含RDD的action算子,就会触发对DStream中RDDs的实际计算过程。
使用foreachRDD的设计模式
DStream.foreachRDD是一个非常强大的原生工具函数,用户可以基于此算子将DStream数据推送到外部系统中。不过用户需要了解如何正确而高效地使用这个工具。以下列举了一些常见的错误。
通常,对外部系统写入数据需要一些连接对象(如:远程server的TCP连接),以便发送数据给远程系统。因此,开发人员可能会不经意地在Spark驱动器(driver)进程中创建一个连接对象,然后又试图在Spark worker节点上使用这个连接。如下例所示:
dstream.foreachRDD(new VoidFunction<JavaRDD<String>>() {
@Override
public void call(JavaRDD<String> rdd) {
final Connection connection = createNewConnection(); // executed at the driver
rdd.foreach(new VoidFunction<String>() {
@Override
public void call(String record) {
connection.send(record); // executed at the worker
}
});
}
});
这段代码是错误的,因为它需要把连接对象序列化,再从驱动器节点发送到worker节点。而这些连接对象通常都是不能跨节点(机器)传递的。比如,连接对象通常都不能序列化,或者在另一个进程中反序列化后再次初始化(连接对象通常都需要初始化,因此从驱动节点发到worker节点后可能需要重新初始化)等。解决此类错误的办法就是在worker节点上创建连接对象。
一个比较好的解决方案是使用 rdd.foreachPartition – 为RDD的每个分区创建一个单独的连接对象,示例如下:
dstream.foreachRDD(new VoidFunction<JavaRDD<String>>() {
@Override
public void call(JavaRDD<String> rdd) {
rdd.foreachPartition(new VoidFunction<Iterator<String>>() {
@Override
public void call(Iterator<String> partitionOfRecords) {
Connection connection = createNewConnection();
while (partitionOfRecords.hasNext()) {
connection.send(partitionOfRecords.next());
}
connection.close();
}
});
}
});
最后,还有一个更优化的办法,就是在多个RDD批次之间复用连接对象。开发者可以维护一个静态连接池来保存连接对象,以便在不同批次的多个RDD之间共享同一组连接对象
dstream.foreachRDD(new VoidFunction<JavaRDD<String>>() {
@Override
public void call(JavaRDD<String> rdd) {
rdd.foreachPartition(new VoidFunction<Iterator<String>>() {
@Override
public void call(Iterator<String> partitionOfRecords) {
// ConnectionPool is a static, lazily initialized pool of connections
Connection connection = ConnectionPool.getConnection();
while (partitionOfRecords.hasNext()) {
connection.send(partitionOfRecords.next());
}
ConnectionPool.returnConnection(connection); // return to the pool for future reuse
}
});
}
});
注意,连接池中的连接应该是懒惰创建的,并且有确定的超时时间,超时后自动销毁。这个实现应该是目前发送数据最高效的实现方式。
注意点:
DStream的转化执行也是懒惰的,需要输出算子来触发,这一点和RDD的懒惰执行由action算子触发很类似。特别地,DStream输出算子中包含的RDD action算子会强制触发对所接收数据的处理。因此,如果你的Streaming应用中没有输出算子,或者你用了dstream.foreachRDD(func)却没有在func中调用RDD action算子,那么这个应用只会接收数据,而不会处理数据,接收到的数据最后只是被简单地丢弃掉了。
默认地,输出算子只能一次执行一个,且按照它们在应用程序代码中定义的顺序执行。
累加器和广播变量
首先需要注意的是,累加器(Accumulators)和广播变量(Broadcast variables)是无法从Spark Streaming的检查点中恢复回来的。所以如果你开启了检查点功能,并同时在使用累加器和广播变量,那么你最好是使用懒惰实例化的单例模式,因为这样累加器和广播变量才能在驱动器(driver)故障恢复后重新实例化。
DataFrame和SQL相关算子
在Streaming应用中可以调用DataFrames and SQL来处理流式数据。开发者可以用通过StreamingContext中的SparkContext对象来创建一个SQLContext,并且,开发者需要确保一旦驱动器(driver)故障恢复后,该SQLContext对象能重新创建出来。同样,你还是可以使用懒惰创建的单例模式来实例化SQLContext,如下面的代码所示,这里我们将最开始的那个小栗子做了一些修改,使用DataFrame和SQL来统计单词计数。其实就是,将每个RDD都转化成一个DataFrame,然后注册成临时表,再用SQL查询这些临时表。
缓存与持久化机制
与RDD类似,Spark Streaming也可以让开发人员手动控制,将数据流中的数据持久化到内存中。对DStream调用persist()方法,就可以让Spark Streaming自动将该数据流中的所有产生的RDD,都持久化到内存中。如果要对一个DStream多次执行操作,那么,对DStream持久化是非常有用的。因为多次操作,可以共享使用内存中的一份缓存数据。
对于基于窗口的操作,比如reduceByWindow、reduceByKeyAndWindow,以及基于状态的操作,比如updateStateByKey,默认就隐式开启了持久化机制。即Spark Streaming默认就会将上述操作产生的Dstream中的数据,缓存到内存中,不需要开发人员手动调用persist()方法。
对于通过网络接收数据的输入流,比如socket、Kafka、Flume等,默认的持久化级别,是将数据复制一份,以便于容错。相当于是,用的是类似MEMORY_ONLY_SER_2
。
与RDD不同的是,默认的持久化级别,统一都是要序列化的。
应用监控
在Spark web UI上看到多出了一个Streaming tab页,上面显示了正在运行的接收器(是否活跃,接收记录的条数,失败信息等)和处理完的批次信息(批次处理时间,查询延时等)。这些信息都可以用来监控streaming应用。
web UI上有两个度量特别重要:
批次处理耗时(Processing Time) – 处理单个批次耗时
批次调度延时(Scheduling Delay) -各批次在队列中等待时间(等待上一个批次处理完)
如果批次处理耗时一直比批次间隔时间大,或者批次调度延时持续上升,就意味着系统处理速度跟不上数据接收速度。这时候你就得考虑一下怎么把批次处理时间降下来(reducing)。
Spark Streaming程序的处理进度可以用StreamingListener接口来监听,这个接口可以监听到接收器的状态和处理时间。
设置合适的批次间隔
要想streaming应用在集群上稳定运行,那么系统处理数据的速度必须能跟上其接收数据的速度。换句话说,批次数据的处理速度应该和其生成速度一样快。对于特定的应用来说,可以从其对应的监控(monitoring)页面上观察验证,页面上显示的处理耗时应该要小于批次间隔时间。
根据spark streaming计算的性质,在一定的集群资源限制下,批次间隔的值会极大地影响系统的数据处理能力。例如,在WordCountNetwork示例中,对于特定的数据速率,一个系统可能能够在批次间隔为2秒时跟上数据接收速度,但如果把批次间隔改为500毫秒系统可能就处理不过来了。所以,批次间隔需要谨慎设置,以确保生产系统能够处理得过来。
要找出适合的批次间隔,你可以从一个比较保守的批次间隔值(如5~10秒)开始测试。要验证系统是否能跟上当前的数据接收速率,你可能需要检查一下端到端的批次处理延迟(可以看看Spark驱动器log4j日志中的Total delay,也可以用StreamingListener接口来检测)。如果这个延迟能保持和批次间隔差不多,那么系统基本就是稳定的。否则,如果这个延迟持久在增长,也就是说系统跟不上数据接收速度,那也就意味着系统不稳定。一旦系统文档下来后,你就可以尝试提高数据接收速度,或者减少批次间隔值。不过需要注意,瞬间的延迟增长可以只是暂时的,只要这个延迟后续会自动降下来就没有问题(如:降到小于批次间隔值)
参考:
http://ifeve.com/spark-stream...
http://spark.apache.org/docs/...
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。