统计术语中,相关系数一词经常被滥用,同时也困扰着我。相关系数描述一个变量随着另一个变量的增加而增加,也可以理解为单调递增。变量之间的这个单调趋势很值得去探索,但是大多数人习惯使用标准相关系数导致无法发现这一趋势。在我的印象中,老师在课堂上经常强调:我们现在所说的、以及以后所说的相关都指线性相关。所以,每当我们一提到相关性或者探寻变量间的相关性时,脑海里便跳出了线性相关。把变量间的相关性限制成了线性相关。
Pearson相关系数,通常是学生们学到的计算相关系数的唯一方法,此方法倾向于研究线性趋势。只有Spearman相关系数,实际上用于检测一般单调趋势,而这种方法通常在课堂上老师没有讲解。通过下面这幅图,你可以清晰地看到随着x的多项式次数的增加,Pearson和Spearman相关系数是如何变化的。
如果Pearson相关系数确实检测到了单调趋势,那么随着x多项式次数的增加,Pearson相关系数会向0靠拢,但不会为0。此时,在非线性相关的时候使用Spearman相关系数会更加精确。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。