linkedlist简单介绍(jdk1.8)
linkedlist的底层结构是线性表的双向链表,每个节点包括两个指针域(一个指向前驱结点,一个指向后继结点)和一个数据域,因为双指针域的独特结构,所以其拥有增删快和存取慢的特点。链表结构不需要预分配存储空间,增加新的结点再去内存中申请即可,不会造成内存浪费和碎片化。
类定义
AbstractSequentialList是List接口的简化版,支持按次序访问,abstractList支持随机访问。
list接口许多常用的基础方法,如set,get,indexof,remove等
Deque是一个双端队列接口,提供了类似栈、队列,push,pop,peek的方法
Cloneable代表可以被复制
Serializable代表可以被序列化
public class LinkedList<E>
extends AbstractSequentialList<E>
implements List<E>, Deque<E>, Cloneable, java.io.Serializable
和Arraylist一样,linkedlist也是一个非线程安全的集合,只能在单线程环境下使用。若想获得一个线程安全的linkedlist可以使用:
List<Object> list = Collections.synchronizedList(new LinkedList<>());
类属性
transient int size = 0;
transient Node<E> first;
transient Node<E> last;
size:双向链表中节点的个数
first:指向链表的首结点
last:指向链表的尾结点
构造函数
public LinkedList() {}
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
构造函数只有两个,第一个非常简单,构造一个空的linkedList。第二个有参构造就是所有Collection下的子类都通过toArray变为数组,然后通过遍历生成节点插入双向链表中。
核心方法
在阅读核心方法之前,我们首先需要了解它的核心内部类Node和ListItr.
Node
链表中的单个结点,具有两个指针域和一个数据域,其结构为:
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
ListItr
AbstractSequentialList定义了抽象方法listIterator,linkedlist实现此方法,并返回迭代器ListItr;其结构为:
private class ListItr implements ListIterator<E> {
private Node<E> lastReturned;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
其实迭代器的核心就是游标,如果不清楚迭代器可以自行查询相关原理,lastReturned是游标前的元素,迭代器中修改数据结构的方法操作的都是lastReturned,next就是游标后元素,nextIndex为next的索引,expectedModCount
为父类AbstractList的modCount,因为是线程不安全的类,用来触发fast-fail机制。用来遍历iterator的有hasNext(),next(),hasPrevious(),previous()。通过iterator修改linkedlist的有remove(),set(),add(),操作的都是游标前元素lastReturned,并且会根据modcount来触发fast-fail机制的检验,这些方法的实现依赖于linkedlist的核心方法。 终于说完ListItr,强烈建议你们自己看下源码,接下来让我们一起看下linkedlist的实现:
//将头结点赋值给final f,新建一个新的结点newNode,将newNode定义为头节点。如果f=null,说明此前是个空链表,所以last也定义newNode,否则将原头节点f(现第二个节点)的前指针指向newNode
private void linkFirst(E e) {
final Node<E> f = first;
final Node<E> newNode = new Node<>(null, e, f);
first = newNode;
if (f == null)
last = newNode;
else
f.prev = newNode;
size++;
modCount++;
}
//将尾结点指向final l,声明一个新的结点newNode(头指针指向尾结点,尾指针指向null),将newNode定义 为新的尾结点。如果l=null,代表原链表没有尾节点(空链表),则将newNode也设为头节点。否则将原尾节点l的尾指针指向newNode。
void linkLast(E e) {
final Node<E> l = last;
final Node<E> newNode = new Node<>(l, e, null);
last = newNode;
if (l == null)
first = newNode;
else
l.next = newNode;
size++;
modCount++;
}
//在某结点之前插入元素。在AC结点中插入b元素,将b元素生成B结点,将B节点的前指针指向A,后指针指向C,将C的前指针指向B,将A的后指针指向B
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
final Node<E> pred = succ.prev;
final Node<E> newNode = new Node<>(pred, e, succ);
succ.prev = newNode;
if (pred == null)
first = newNode;
else
pred.next = newNode;
size++;
modCount++;
}
//将结点从链表中分离。
E unlink(Node<E> x) {
// assert x != null;
final E element = x.item;
final Node<E> next = x.next;
final Node<E> prev = x.prev;
if (prev == null) {
first = next;
} else {
prev.next = next;
x.prev = null;
}
if (next == null) {
last = prev;
} else {
next.prev = prev;
x.next = null;
}
x.item = null;
size--;
modCount++;
return element;
}
//根据索引随机访问linkedlist,为get方法的真正实现。
//size右移1位,大致相当于size/2.若index>size/2,则从尾结点向前遍历,否则从头结点向后遍历
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
public E set(int index, E element) {
checkElementIndex(index);
Node<E> x = node(index);
E oldVal = x.item;
x.item = element;
return oldVal;
}
public void add(int index, E element) {
checkPositionIndex(index);
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
//查询o最后一次出现的索引,将o分为两种情况,一种为==null,另一种用equals比较,后序遍历得索引值。
public int lastIndexOf(Object o) {
int index = size;
if (o == null) {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (x.item == null)
return index;
}
} else {
for (Node<E> x = last; x != null; x = x.prev) {
index--;
if (o.equals(x.item))
return index;
}
}
return -1;
}
总结
其实只要你对双向链表结构比较熟悉,那linkedlist源码读起来就会很轻松。linkedlist不需要分配存储空间,只要有就可以分配,元素个数也不受限制,在找到指定索引的结点后,进行增删改都是O(1)的操作,效率非常高。在遍历linkedlist的时候,最好使用foreach或者iterator,严禁直接使用get()遍历。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。