在工作中,我们经常会遇到这样的问题,需要更新库存,当我们查询到可用的库存准备修改时,这时,其他的用户可能已经对这个库存数据进行修改了,导致,我们查询到的数据会有问题,下面我们就来看解决方法。
在MySQL的InnoDB中,预设的Tansaction isolation level 为REPEATABLE READ(可重读)
如果SELECT 后面若要UPDATE 同一个表单,最好使用SELECT ... UPDATE。
举个例子:
假设商品表单products 内有一个存放商品数量的quantity ,在订单成立之前必须先确定quantity 商品数量是否足够(quantity>0) ,然后才把数量更新为1。代码如下:
SELECT quantity FROM products WHERE id=3; UPDATE products SET quantity = 1 WHERE id=3;
为什么不安全呢?
少量的状况下或许不会有问题,但是大量的数据存取「铁定」会出问题。如果我们需要在quantity>0 的情况下才能扣库存,假设程序在第一行SELECT 读到的quantity 是2 ,看起来数字没有错,但是当MySQL 正准备要UPDATE 的时候,可能已经有人把库存扣成0 了,但是程序却浑然不知,将错就错的UPDATE 下去了。因此必须透过的事务机制来确保读取及提交的数据都是正确的。
于是我们在MySQL 就可以这样测试,代码如下:
SET AUTOCOMMIT=0; BEGIN WORK; SELECT quantity FROM products WHERE id=3 FOR UPDATE;
此时products 数据中id=3 的数据被锁住(注3),其它事务必须等待此次事务 提交后才能执行
SELECT * FROM products WHERE id=3 FOR UPDATE
如此可以确保quantity 在别的事务读到的数字是正确的。
UPDATE products SET quantity = '1' WHERE id=3 ; COMMIT WORK;
提交(Commit)写入数据库,products 解锁。
注1: BEGIN/COMMIT 为事务的起始及结束点,可使用二个以上的MySQL Command 视窗来交互观察锁定的状况。
注2: 在事务进行当中,只有SELECT ... FOR UPDATE
或LOCK IN SHARE MODE 同一笔数据时会等待其它事务结束后才执行,一般SELECT ... 则不受此影响。
注3: 由于InnoDB 预设为Row-level Lock,数据列的锁定可参考这篇。
注4: InnoDB 表单尽量不要使用LOCK TABLES 指令,若情非得已要使用,请先看官方对于InnoDB 使用LOCK TABLES 的说明,以免造成系统经常发生死锁。
更高级用法
如果我们需要先查询,后更新数据的话,最好可以这样使用语句:
UPDATE products SET quantity = '1' WHERE id=3 AND quantity > 0;
这样,可以不用添加事物就可处理。
mysql处理高并发,防止库存超卖
看到了一篇非常好的文章,特转此学习。
今天王总又给我们上了一课,其实mysql处理高并发,防止库存超卖的问题,在去年的时候,王总已经提过;但是很可惜,即使当时大家都听懂了,但是在现实开发中,还是没这方面的意识。今天就我的一些理解,整理一下这个问题,并希望以后这样的课程能多点。
先来就库存超卖的问题作描述:一般电子商务网站都会遇到如团购、秒杀、特价之类的活动,而这样的活动有一个共同的特点就是访问量激增、上千甚至上万人抢购一个商品。然而,作为活动商品,库存肯定是很有限的,如何控制库存不让出现超买,以防止造成不必要的损失是众多电子商务网站程序员头疼的问题,这同时也是最基本的问题。
从技术方面剖析,很多人肯定会想到事务,但是事务是控制库存超卖的必要条件,但不是充分必要条件。
举例:
总库存:4个商品
请求人:a、1个商品 b、2个商品 c、3个商品
程序如下:
beginTranse(开启事务)
try{
$result = $dbca->query('select amount from s_store where postID = 12345');
if(result->amount > 0){
//quantity为请求减掉的库存数量
$dbca->query('update s_store set amount = amount - quantity where postID = 12345');
}
}catch($e Exception){
rollBack(回滚)
}
commit(提交事务)
以上代码就是我们平时控制库存写的代码了,大多数人都会这么写,看似问题不大,其实隐藏着巨大的漏洞。数据库的访问其实就是对磁盘文件的访问,数据库中的表其实就是保存在磁盘上的一个个文件,甚至一个文件包含了多张表。例如由于高并发,当前有三个用户a、b、c三个用户进入到了这个事务中,这个时候会产生一个共享锁,所以在select的时候,这三个用户查到的库存数量都是4个,同时还要注意,mysql innodb查到的结果是有版本控制的,再其他用户更新没有commit之前(也就是没有产生新版本之前),当前用户查到的结果依然是就版本;
然后是update,假如这三个用户同时到达update这里,这个时候update更新语句会把并发串行化,也就是给同时到达这里的是三个用户排个序,一个一个执行,并生成排他锁,在当前这个update语句commit之前,其他用户等待执行,commit后,生成新的版本;这样执行完后,库存肯定为负数了。但是根据以上描述,我们修改一下代码就不会出现超买现象了,代码如下:
beginTranse(开启事务)
try{
//quantity为请求减掉的库存数量
$dbca->query('update s_store set amount = amount - quantity where postID = 12345');
$result = $dbca->query('select amount from s_store where postID = 12345');
if(result->amount < 0){
throw new Exception('库存不足');
}
}catch($e Exception){
rollBack(回滚)
}
commit(提交事务)
另外,更简洁的方法:
beginTranse(开启事务)
try{
//quantity为请求减掉的库存数量
$dbca->query('update s_store set amount = amount - quantity where amount>=quantity and postID = 12345');
}catch($e Exception){
rollBack(回滚)
}
commit(提交事务)
=====================================================================================
1、在秒杀的情况下,肯定不能如此高频率的去读写数据库,会严重造成性能问题的
必须使用缓存,将需要秒杀的商品放入缓存中,并使用锁来处理其并发情况。当接到用户秒杀提交订单的情况下,先将商品数量递减(加锁/解锁)后再进行其他方面的处理,处理失败在将数据递增1(加锁/解锁),否则表示交易成功。
当商品数量递减到0时,表示商品秒杀完毕,拒绝其他用户的请求。
2、这个肯定不能直接操作数据库的,会挂的。直接读库写库对数据库压力太大,要用缓存。
把你要卖出的商品比如10个商品放到缓存中;然后在memcache里设置一个计数器来记录请求数,这个请求书你可以以你要秒杀卖出的商品数为基数,比如你想卖出10个商品,只允许100个请求进来。那当计数器达到100的时候,后面进来的就显示秒杀结束,这样可以减轻你的服务器的压力。然后根据这100个请求,先付款的先得后付款的提示商品以秒杀完。
3、首先,多用户并发修改同一条记录时,肯定是后提交的用户将覆盖掉前者提交的结果了。
这个直接可以使用加锁机制去解决,乐观锁或者悲观锁。乐观锁:
,就是在数据库设计一个版本号的字段,每次修改都使其+1,这样在提交时比对提交前的版本号就知道是不是并发提交了,但是有个缺点就是只能是应用中控制,如果有跨应用修改同一条数据乐观锁就没办法了,这个时候可以考虑悲观锁。
悲观锁:
,就是直接在数据库层面将数据锁死,类似于oralce中使用select xxxxx from xxxx where xx=xx for update
,这样其他线程将无法提交数据。
除了加锁的方式也可以使用接收锁定的方式,思路是在数据库中设计一个状态标识位,用户在对数据进行修改前,将状态标识位标识为正在编辑的状态,这样其他用户要编辑此条记录时系统将发现有其他用户正在编辑,则拒绝其编辑的请求,类似于你在操作系统中某文件正在执行,然后你要修改该文件时,系统会提醒你该文件不可编辑或删除。
4、不建议在数据库层面加锁,建议通过服务端的内存锁(锁主键)。当某个用户要修改某个id的数据时,把要修改的id存入memcache,若其他用户触发修改此id的数据时,读到memcache有这个id的值时,就阻止那个用户修改。
5、实际应用中,并不是让mysql去直面大并发读写,会借助“外力”,比如缓存、利用主从库实现读写分离、分表、使用队列写入等方法来降低并发读写。
悲观锁和乐观锁
首先,多用户并发修改同一条记录时,肯定是后提交的用户将覆盖掉前者提交的结果了。这个直接可以使用加锁机制去解决,乐观锁或者悲观锁。
悲观锁(Pessimistic Lock)
, 顾名思义,就是很悲观,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会block直到它拿到锁。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。
乐观锁(Optimistic Lock)
, 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号等机制。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库如果提供类似于write_condition机制的其实都是提供的乐观锁。
两种锁各有优缺点,不能单纯的定义哪个好于哪个。乐观锁比较适合数据修改比较少,读取比较频繁的场景,即使出现了少量的冲突,这样也省去了大量的锁的开销,故而提高了系统的吞吐量。但是如果经常发生冲突(写数据比较多的情况下),上层应用不不断的retry,这样反而降低了性能,对于这种情况使用悲观锁就更合适。
实战
对这个表的 amount 进行修改,开两个命令行窗口
第一个窗口A;
SET AUTOCOMMIT=0; BEGIN WORK; SELECT * FROM order_tbl WHERE order_id='124' FOR UPDATE;
第二个窗口B:
# 更新订单ID 124 的库存数量
UPDATE `order_tbl` SET amount = 1 WHERE order_id = 124;
我们可以看到窗口A加了事物,锁住了这条数据,窗口B执行时会出现这样的问题:
第一个窗口完整的提交事物:
SET AUTOCOMMIT=0; BEGIN WORK; SELECT * FROM order_tbl WHERE order_id='124' FOR UPDATE;
UPDATE `order_tbl` SET amount = 10 WHERE order_id = 124;
COMMIT WORK;
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。