前面一篇文章讨论了ConsumerFetcherManager的MaxLag与ConsumerOffsetChecker的lag值的区别。但是关于MaxLag的值还没有讲的太透彻,这里再深入一下,如何让ConsumerFetcherManager的MaxLag有值。

AbstractFetcherThread#processFetchRequest

kafka_2.10-0.8.2.2-sources.jar!/kafka/server/AbstractFetcherThread.scala

override def doWork() {
    inLock(partitionMapLock) {
      if (partitionMap.isEmpty)
        partitionMapCond.await(200L, TimeUnit.MILLISECONDS)
      partitionMap.foreach {
        case((topicAndPartition, offset)) =>
          fetchRequestBuilder.addFetch(topicAndPartition.topic, topicAndPartition.partition,
                           offset, fetchSize)
      }
    }

    val fetchRequest = fetchRequestBuilder.build()
    if (!fetchRequest.requestInfo.isEmpty)
      processFetchRequest(fetchRequest)
  }
值得注意,这里构建了fetchRequest
这里的partitionMap,key是TopicAndPartition,value就是本地最大的offset
每次拉取的时候,以本地已经拉取的最大值,还有拉取大小构造fetchRequest

FetchRequest

kafka_2.10-0.8.2.2-sources.jar!/kafka/api/FetchRequest.scala

def addFetch(topic: String, partition: Int, offset: Long, fetchSize: Int) = {
    requestMap.put(TopicAndPartition(topic, partition), PartitionFetchInfo(offset, fetchSize))
    this
  }
可以看到这里的offset与fetchSize决定了这个fetcher从broker拉取数据的开始位置和拉取数据的条数。

ConsumerFetcherThread

kafka_2.10-0.8.2.2-sources.jar!/kafka/consumer/ConsumerFetcherThread.scala

class ConsumerFetcherThread(name: String,
                            val config: ConsumerConfig,
                            sourceBroker: Broker,
                            partitionMap: Map[TopicAndPartition, PartitionTopicInfo],
                            val consumerFetcherManager: ConsumerFetcherManager)
        extends AbstractFetcherThread(name = name, 
                                      clientId = config.clientId,
                                      sourceBroker = sourceBroker,
                                      socketTimeout = config.socketTimeoutMs,
                                      socketBufferSize = config.socketReceiveBufferBytes,
                                      fetchSize = config.fetchMessageMaxBytes,
                                      fetcherBrokerId = Request.OrdinaryConsumerId,
                                      maxWait = config.fetchWaitMaxMs,
                                      minBytes = config.fetchMinBytes,
                                      isInterruptible = true) {
        //...
}                                      
这里使用的fetchSize来自config.fetchMessageMaxBytes

kafka_2.10-0.8.2.2-sources.jar!/kafka/consumer/ConsumerConfig.scala

class ConsumerConfig private (val props: VerifiableProperties) extends ZKConfig(props) {
    //...
    /** the number of byes of messages to attempt to fetch */
      val fetchMessageMaxBytes = props.getInt("fetch.message.max.bytes", FetchSize)
}
object ConsumerConfig extends Config {
  val RefreshMetadataBackoffMs = 200
  val SocketTimeout = 30 * 1000
  val SocketBufferSize = 64*1024
  val FetchSize = 1024 * 1024
  val MaxFetchSize = 10*FetchSize
  val NumConsumerFetchers = 1
  val DefaultFetcherBackoffMs = 1000
  val AutoCommit = true
  val AutoCommitInterval = 60 * 1000
  val MaxQueuedChunks = 2
  val MaxRebalanceRetries = 4
  val AutoOffsetReset = OffsetRequest.LargestTimeString
  val ConsumerTimeoutMs = -1
  val MinFetchBytes = 1
  val MaxFetchWaitMs = 100
  val MirrorTopicsWhitelist = ""
  val MirrorTopicsBlacklist = ""
  val MirrorConsumerNumThreads = 1
  val OffsetsChannelBackoffMs = 1000
  val OffsetsChannelSocketTimeoutMs = 10000
  val OffsetsCommitMaxRetries = 5
  val OffsetsStorage = "zookeeper"

  val MirrorTopicsWhitelistProp = "mirror.topics.whitelist"
  val MirrorTopicsBlacklistProp = "mirror.topics.blacklist"
  val ExcludeInternalTopics = true
  val DefaultPartitionAssignmentStrategy = "range" /* select between "range", and "roundrobin" */
  val MirrorConsumerNumThreadsProp = "mirror.consumer.numthreads"
  val DefaultClientId = ""
  //...
}  
这个fetchSize默认是1024 * 1024,也就是1048576,即每次fetch的时候拉取1048576这么多条。

AbstractFetcherThread#processFetchRequest

private def processFetchRequest(fetchRequest: FetchRequest) {
    val partitionsWithError = new mutable.HashSet[TopicAndPartition]
    var response: FetchResponse = null
    try {
      trace("Issuing to broker %d of fetch request %s".format(sourceBroker.id, fetchRequest))
      response = simpleConsumer.fetch(fetchRequest)
    } catch {
      case t: Throwable =>
        if (isRunning.get) {
          warn("Error in fetch %s. Possible cause: %s".format(fetchRequest, t.toString))
          partitionMapLock synchronized {
            partitionsWithError ++= partitionMap.keys
          }
        }
    }
    fetcherStats.requestRate.mark()

    if (response != null) {
      // process fetched data
      inLock(partitionMapLock) {
        response.data.foreach {
          case(topicAndPartition, partitionData) =>
            val (topic, partitionId) = topicAndPartition.asTuple
            val currentOffset = partitionMap.get(topicAndPartition)
            // we append to the log if the current offset is defined and it is the same as the offset requested during fetch
            if (currentOffset.isDefined && fetchRequest.requestInfo(topicAndPartition).offset == currentOffset.get) {
              partitionData.error match {
                case ErrorMapping.NoError =>
                  try {
                    val messages = partitionData.messages.asInstanceOf[ByteBufferMessageSet]
                    val validBytes = messages.validBytes
                    //这里请求之后,如果返回数据为空,那么newOffset就是取本地最大的offset
                    val newOffset = messages.shallowIterator.toSeq.lastOption match {
                      case Some(m: MessageAndOffset) => m.nextOffset
                      case None => currentOffset.get
                    }
                    partitionMap.put(topicAndPartition, newOffset)
                    fetcherLagStats.getFetcherLagStats(topic, partitionId).lag = partitionData.hw - newOffset
                    fetcherStats.byteRate.mark(validBytes)

                    //下面这个方法将拉回来的数据放进队列
                    // Once we hand off the partition data to the subclass, we can't mess with it any more in this thread
                    processPartitionData(topicAndPartition, currentOffset.get, partitionData)
                  } catch {
                    case ime: InvalidMessageException =>
                      // we log the error and continue. This ensures two things
                      // 1. If there is a corrupt message in a topic partition, it does not bring the fetcher thread down and cause other topic partition to also lag
                      // 2. If the message is corrupt due to a transient state in the log (truncation, partial writes can cause this), we simply continue and
                      //    should get fixed in the subsequent fetches
                      logger.error("Found invalid messages during fetch for partition [" + topic + "," + partitionId + "] offset " + currentOffset.get + " error " + ime.getMessage)
                    case e: Throwable =>
                      throw new KafkaException("error processing data for partition [%s,%d] offset %d"
                                               .format(topic, partitionId, currentOffset.get), e)
                  }
                case ErrorMapping.OffsetOutOfRangeCode =>
                  try {
                    val newOffset = handleOffsetOutOfRange(topicAndPartition)
                    partitionMap.put(topicAndPartition, newOffset)
                    error("Current offset %d for partition [%s,%d] out of range; reset offset to %d"
                      .format(currentOffset.get, topic, partitionId, newOffset))
                  } catch {
                    case e: Throwable =>
                      error("Error getting offset for partition [%s,%d] to broker %d".format(topic, partitionId, sourceBroker.id), e)
                      partitionsWithError += topicAndPartition
                  }
                case _ =>
                  if (isRunning.get) {
                    error("Error for partition [%s,%d] to broker %d:%s".format(topic, partitionId, sourceBroker.id,
                      ErrorMapping.exceptionFor(partitionData.error).getClass))
                    partitionsWithError += topicAndPartition
                  }
              }
            }
        }
      }
    }

    if(partitionsWithError.size > 0) {
      debug("handling partitions with error for %s".format(partitionsWithError))
      handlePartitionsWithErrors(partitionsWithError)
    }
  }

ConsumerFetcherThread#processPartitionData

kafka_2.10-0.8.2.2-sources.jar!/kafka/consumer/ConsumerFetcherThread.scala

// process fetched data
  def processPartitionData(topicAndPartition: TopicAndPartition, fetchOffset: Long, partitionData: FetchResponsePartitionData) {
    val pti = partitionMap(topicAndPartition)
    if (pti.getFetchOffset != fetchOffset)
      throw new RuntimeException("Offset doesn't match for partition [%s,%d] pti offset: %d fetch offset: %d"
                                .format(topicAndPartition.topic, topicAndPartition.partition, pti.getFetchOffset, fetchOffset))
    pti.enqueue(partitionData.messages.asInstanceOf[ByteBufferMessageSet])
  }

PartitionTopicInfo#enqueue

kafka_2.10-0.8.2.2-sources.jar!/kafka/consumer/PartitionTopicInfo.scala

/**
   * Enqueue a message set for processing.
   */
  def enqueue(messages: ByteBufferMessageSet) {
    val size = messages.validBytes
    if(size > 0) {
      val next = messages.shallowIterator.toSeq.last.nextOffset
      trace("Updating fetch offset = " + fetchedOffset.get + " to " + next)
      chunkQueue.put(new FetchedDataChunk(messages, this, fetchedOffset.get))
      fetchedOffset.set(next)
      debug("updated fetch offset of (%s) to %d".format(this, next))
      consumerTopicStats.getConsumerTopicStats(topic).byteRate.mark(size)
      consumerTopicStats.getConsumerAllTopicStats().byteRate.mark(size)
    } else if(messages.sizeInBytes > 0) {
      chunkQueue.put(new FetchedDataChunk(messages, this, fetchedOffset.get))
    }
  }
如果数据为空,则不放进队列

chunkQueue大小

kafka_2.10-0.8.2.2-sources.jar!/kafka/consumer/ZookeeperConsumerConnector.scala

def consume[K, V](topicCountMap: scala.collection.Map[String,Int], keyDecoder: Decoder[K], valueDecoder: Decoder[V])
      : Map[String,List[KafkaStream[K,V]]] = {
    debug("entering consume ")
    if (topicCountMap == null)
      throw new RuntimeException("topicCountMap is null")

    val topicCount = TopicCount.constructTopicCount(consumerIdString, topicCountMap)

    val topicThreadIds = topicCount.getConsumerThreadIdsPerTopic

    // make a list of (queue,stream) pairs, one pair for each threadId
    val queuesAndStreams = topicThreadIds.values.map(threadIdSet =>
      threadIdSet.map(_ => {
        val queue =  new LinkedBlockingQueue[FetchedDataChunk](config.queuedMaxMessages)
        val stream = new KafkaStream[K,V](
          queue, config.consumerTimeoutMs, keyDecoder, valueDecoder, config.clientId)
        (queue, stream)
      })
    ).flatten.toList

    val dirs = new ZKGroupDirs(config.groupId)
    registerConsumerInZK(dirs, consumerIdString, topicCount)
    reinitializeConsumer(topicCount, queuesAndStreams)

    loadBalancerListener.kafkaMessageAndMetadataStreams.asInstanceOf[Map[String, List[KafkaStream[K,V]]]]
  }
queue在这里创建了,大小为config.queuedMaxMessages
/** max number of message chunks buffered for consumption, each chunk can be up to fetch.message.max.bytes*/
  val queuedMaxMessages = props.getInt("queued.max.message.chunks", MaxQueuedChunks)
  val MaxQueuedChunks = 2
默认队列最大只能有2个FetchedDataChunk
而每个FetchedDataChunk里头最大的消息数目就是fetchSize大小也就是1024*1024
也就是说每个消费线程的chunkQueue里头默认最大的消息数目为210241024

当超过这个数目的时候,enquue就会阻塞,这样就形成了对整个fetch的拉取速度的控制。

ConsumerFetcherManager的MaxLag

要使得这个有值的话,那就是修改fetch.message.max.bytes的值,改小一点。比如

        props.put("fetch.message.max.bytes","10");
        props.put("queued.max.message.chunks","1");
那么每次只拉10条消息,假设目前的lag如下
Group  Topic                Pid Offset          logSize         Lag             Owner
mgroup mtopic              0   353             8727            8374            demo-1514550322182-6d67873d-0
mgroup mtopic              1   258             8702            8444            demo-1514550322182-6d67873d-1
mgroup mtopic              2   307             8615            8308            demo-1514550322182-6d67873d-2

拉取一次之后

                    val newOffset = messages.shallowIterator.toSeq.lastOption match {
                      case Some(m: MessageAndOffset) => m.nextOffset
                      case None => currentOffset.get
                    }
                    partitionMap.put(topicAndPartition, newOffset)
                    fetcherLagStats.getFetcherLagStats(topic, partitionId).lag = partitionData.hw - newOffset
这里的nextOffset = offset + 1,也就是拉取回来的最大offset+1 = 259,hw的话是8702,那么lag值就是8702-259=8443
这里为了复现,让消费线程拉取一条之后抛异常退出

小结

生产环境注意根据消息大小以及环境内存等对如下参数进行配置,否则很容易引发OOM

  • queued.max.message.chunks,默认是2,控制chunkQueue的容量
  • fetch.message.max.bytes,默认是1024*1024,控制每个chunk的消息最大数目

另外关于ConsumerFetcherManager的MaxLag,只有在上面两个参数合理设置的情况下,才能对监控有点点帮助(chunkQueue越小越能从MaxLag反应消费者消费滞后的情况;否则只能反应client fetcher thread的消息拉取的滞后情况;不过设置太小的话就得频繁拉取,影响消费者消费,可以根据情况适中调整)。从实际场景来看,还是一般比较少改动参数的话,那么还是得以ConsumerOffsetChecker的lag值做消费者消费滞后的监控才准确。

doc


codecraft
11.9k 声望2k 粉丝

当一个代码的工匠回首往事时,不因虚度年华而悔恨,也不因碌碌无为而羞愧,这样,当他老的时候,可以很自豪告诉世人,我曾经将代码注入生命去打造互联网的浪潮之巅,那是个很疯狂的时代,我在一波波的浪潮上留下...