27
我的github博客地址 https://github.com/hujiulong/...

前言

在前端开发中,贝赛尔曲线无处不在:

  • 它可以用来绘制曲线,在svg和canvas中,原生提供的曲线绘制都是使用贝赛尔曲线
  • 它也可以用来描述一个缓动算法,设置css的transition-timing-function属性,可以使用贝塞尔曲线来描述过渡的缓动计算
  • 几乎所有前端2D或3D图形图表库(echarts,d3,three.js)都会使用到贝塞尔曲线

这篇文章我准备从实现一个非常简单的曲线动画效果入手,帮助大家彻底地弄懂什么是贝塞尔曲线,以及它有哪些特性,文章中有一点点数学公式,但是都非常简单:)。

34359508-9b656938-ea93-11e7-9caf-db0464af2db0.gif实现这样一个曲线动画

可以点击这里查看在线演示

在写代码之前,先了解一下什么是贝塞尔曲线吧。

贝塞尔曲线

贝塞尔曲线(Bezier curve)是计算机图形学中相当重要的参数曲线,它通过一个方程来描述一条曲线,根据方程的最高阶数,又分为线性贝赛尔曲线,二次贝塞尔曲线、三次贝塞尔曲线和更高阶的贝塞尔曲线。

下面详细介绍一下用得比较多的二次贝塞尔曲线和三次贝塞尔曲线

二次贝塞尔曲线

二次贝塞尔曲线由三个点P0,P1,P2来确定,这些点也被称作控制点。曲线的方程为:

这个方程其实有它的几何意义,它表示可以通过这样的步骤来绘制一条曲线:

  • 选定一个0-1t
  • 通过P0P1计算出点Q0Q0P0 P1连成的直线上,并且length( P0, Q0 ) = length( P0, P1 ) * t
  • 同样,通过P1P2计算出Q1,使得length( P1, Q1 ) = length( P1, P2 ) * t
  • 再重复一次这个步骤,通过Q1Q2计算出B,使得length( Q0, Q1 ) = length( Q0, B ) * tB就为当前曲线上的点

注:上面的length表示两点之间的长度

1608e25792da9c97?w=240&h=100&f=png&s=5429图:二次贝塞尔曲线结构

有了曲线方程,我们直接代入具体的t值就能算出点B了。

如果将t的值从0过渡到1,不断计算点B,就可以得到一条二次贝塞尔曲线:

1608e1929786355b?w=240&h=100&f=gif&s=74274图:二次贝塞尔线绘制过程

在canvas中,绘制二次贝塞尔曲线的方法为

ctx.quadraticCurveTo( p1x, p1y, p2x, p2y )

其中p1x, p1y, p2x, p2y为后两个控制点(P1P2)的横纵坐标,它默认将当前路径的起点作为一个控制点(P0)。

三次贝塞尔曲线

三次贝塞尔曲线需要四个点P0,P1,P2,P3来确定,曲线方程为

它的计算过程和二次贝塞尔曲线类似,这里不再赘述,可以看下图:

1608e3077df20e7b?w=240&h=100&f=png&s=7942图:三次贝塞尔曲线结构

同样,将t的值从0过渡到1,就可以绘制出一条三次贝塞尔曲线:

1608e2ba9c18d8d6?w=240&h=100&f=gif&s=109773图:三次贝塞尔曲线绘制过程

在canvas中,绘制三次贝塞尔曲线的方法为

ctx.bezierCurveTo( p1x, p1y, p2x, p2y, p3x, p3y )

其中p1x, p1y, p2x, p2y, p3x, p3y为后三个控制点(P1,P2P3)的横纵坐标,它默认将当前路径的起点作为一个控制点(P0)。

贝塞尔曲线的特征

在三次贝塞尔曲线后面,还有更高阶的贝塞尔曲线,同样它们绘制的过程也更加复杂

四次贝塞尔曲线

图:四次贝塞尔曲线

五次贝塞尔曲线

1608e389f3e76e8d图:五次贝塞尔曲线

我们可以归纳出贝塞尔曲线有几个重要的特征:

  1. n阶贝塞尔曲线需要n+1个点来确定
  2. 贝塞尔曲线是平滑的
  3. 贝塞尔曲线的起点和终点与对应控制点的连线相切

绘制贝塞尔曲线

复习完基础概念,接下来就要讲如果绘制贝塞尔曲线啦

为简单起见,我们选择使用二次贝塞尔曲线

我们先不考虑动画的事,我们先将问题简化成:给定一个起点和一个终点,需要实现一个函数,它能够绘制出一条曲线。

也就是说我们需要实现一个函数drawCurvePath,除渲染上下文ctx外(不清楚ctx是什么的同学可以先熟悉下canvas的基本概念),它接受三个参数,分别为二次贝塞尔曲线的三个控制点。我们将样式控制移到函数外,drawCurvePath只用来绘制路径。

/**
 * 绘制二次贝赛尔曲线路径
 * @param  {Object} ctx
 * @param  {Array<number>} p0
 * @param  {Array<number>} p1
 * @param  {Array<number>} p2
 */
function drawCurvePath( ctx, p0, p1, p2 ) {
    // ...
}

前文提到过,在canvas中,绘制二次贝赛尔曲线的方法是quadraticCurveTo,所以只要短短两行就能完成这个方法。

/**
 * 绘制二次贝赛尔曲线路径
 * @param  {CanvasRenderingContext2D} ctx
 * @param  {Array<number>} p0
 * @param  {Array<number>} p1
 * @param  {Array<number>} p2
 */
function drawCurvePath( ctx, p0, p1, p2 ) {
    ctx.moveTo( p0[ 0 ], p0[ 1 ] );
    ctx.quadraticCurveTo( 
        p1[ 0 ], p1[ 1 ],
        p2[ 0 ], p2[ 1 ]
    );
}

这样就完成了基本的绘制二次贝塞尔曲线的方法了。

但是函数这样设计有点小问题

如果我们是在做一个图形库,我们想给使用者提供一个绘制曲线的方法。

对于使用者来说,他只想在给定的起点和终点间间绘制一条曲线,他想要得到的曲线尽量美观,但是又不想关心具体的实现细节,如果还需要给第三个点,使用者会有一定的学习成本(至少需要弄明白什么是贝塞尔曲线)。

看到这里你可能会比较疑惑,即使是二次贝塞尔曲线也需要三个控制点,只有起点和终点怎么绘制曲线呢。

我们可以在起点和终点的垂直平分线上选一点作为第三个控制点,可以提供给使用者一个参数来控制曲线的弯曲程度,现在函数就变成了这样

/**
 * 绘制一条曲线路径
 * @param  {CanvasRenderingContext2D} ctx
 * @param  {Array<number>} start 起点
 * @param  {Array<number>} end 终点
 * @param  {number} curveness 曲度(0-1)
 */
function drawCurvePath( ctx, start, end, curveness ) {
    // ...
}

我们用curveness来表示曲线的弯曲程度,也就是第三个控制点的偏离程度。这样很容易就能计算出中间点。
现在完整的函数变成了这样:

/**
 * 绘制一条曲线路径
 * @param  {Object} ctx canvas渲染上下文
 * @param  {Array<number>} start 起点
 * @param  {Array<number>} end 终点
 * @param  {number} curveness 曲度(0-1)
 */
function drawCurvePath( ctx, start, end, curveness ) {
    // 计算中间控制点
    var cp = [
         ( start[ 0 ] + end[ 0 ] ) / 2 - ( start[ 1 ] - end[ 1 ] ) * curveness,
         ( start[ 1 ] + end[ 1 ] ) / 2 - ( end[ 0 ] - start[ 0 ] ) * curveness
    ];
    ctx.moveTo( start[ 0 ], start[ 1 ] );
    ctx.quadraticCurveTo( 
        cp[ 0 ], cp[ 1 ],
        end[ 0 ], end[ 1 ]
    );
}

对,就这么短短几行,接下来我们就可以通过它来绘制一条曲线了,代码如下

<!DOCTYPE html>
<html lang="en">
    <head>
        <title>draw curve</title>
    </head>
    <body>
        <canvas id="canvas" width="800" height="800"></canvas>
        <script>
            var canvas = document.getElementById( 'canvas' );
            var ctx = canvas.getContext( '2d' );
            
            ctx.lineWidth = 2;
            ctx.strokeStyle = '#000';
            ctx.beginPath();
    
            drawCurvePath( 
                ctx,
                [ 100, 100 ],
                [ 200, 300 ],
                0.4
            );
            
            ctx.stroke();
            
            function drawCurvePath( ctx, start, end, curveness ) {
                // ...
            }
        </script>
    </body>
</html>

绘制结果:

qq 20171226233508
绘制一条曲线

绘制贝塞尔曲线动画

终于来到文章的本体啦,我们的目的不是绘制一条静态的曲线,我们想绘制一条有过渡效果的曲线。

简化一下问题,那就是我们希望绘制曲线的函数还接受另一个参数,表示绘制曲线的百分比。我们定时去调用这个函数,递增百分比这个参数,就能画出动画了。

我们新增一个参数percent来表示百分比,现在函数变成了这样:

/**
 * 绘制一条曲线路径
 * @param  {Object} ctx canvas渲染上下文
 * @param  {Array<number>} start 起点
 * @param  {Array<number>} end 终点
 * @param  {number} curveness 曲度(0-1)
 * @param  {number} percent 绘制百分比(0-100)
 */
function drawCurvePath( ctx, start, end, curveness, percent ) {
    // ...
}

但是canvas提供的quadraticCurveTo方法只能绘制一条完整的二次贝赛尔曲线,没有办法去控制它只画一部分。

画完后用clearRect擦除掉一部分?这不太可行,因为很难确定要擦除的范围。如果曲线的线宽比较宽,就还需要保证擦除的边界和曲线末端垂直,问题就变得很复杂了。

现在再重新看看这张图

1608e1929786355b?w=240&h=100&f=gif&s=74274

我们是不是可以将percent这个参数理解成t值,然后通过贝赛尔曲线方程去计算出中间所有的点,用直线连接起来,以此模拟绘制贝赛尔曲线的一部分呢?

方法一

我们不再用canvas提供的quadraticCurveTo来绘制曲线,而是通过贝赛尔曲线的方程计算出一系列点,用多端直线来模拟曲线。

这样做的好处时,我们可以很容易的控制绘制的范围。

那么函数实现就变成了这样:

/**
 * 绘制一条曲线路径
 * @param  {Object} ctx canvas渲染上下文
 * @param  {Array<number>} start 起点
 * @param  {Array<number>} end 终点
 * @param  {number} curveness 曲度(0-1)
 * @param  {number} percent 绘制百分比(0-100)
 */
function drawCurvePath( ctx, start, end, curveness, percent ) {

    var cp = [
         ( start[ 0 ] + end[ 0 ] ) / 2 - ( start[ 1 ] - end[ 1 ] ) * curveness,
         ( start[ 1 ] + end[ 1 ] ) / 2 - ( end[ 0 ] - start[ 0 ] ) * curveness
    ];
    
    ctx.moveTo( start[ 0 ], start[ 1 ] );
    
    for ( var t = 0; t <= percent / 100; t += 0.01 ) {

        var x = quadraticBezier( start[ 0 ], cp[ 0 ], end[ 0 ], t );
        var y = quadraticBezier( start[ 1 ], cp[ 1 ], end[ 1 ], t );
        
        ctx.lineTo( x, y );
    }
    
}

function quadraticBezier( p0, p1, p2, t ) {
    var k = 1 - t;
    return k * k * p0 + 2 * ( 1 - t ) * t * p1 + t * t * p2;    // 这个方程就是二次贝赛尔曲线方程
}

接下来就可以通过设置定时器,每隔一段时间调用一次这个方法,并且递增percent

为了动画更加平滑,我们使用requestAnimationFrame来代替定时器

<!DOCTYPE html>
<html lang="en">
    <head>
        <title>draw curve</title>
    </head>
    <body>
        <canvas id="canvas" width="800" height="800"></canvas>
        <script>
            var canvas = document.getElementById( 'canvas' );
            var ctx = canvas.getContext( '2d' );
            
            ctx.lineWidth = 2;
            ctx.strokeStyle = '#000';
            
            var percent = 0;
            
            function animate() {
                
                ctx.clearRect( 0, 0, 800, 800 );
                ctx.beginPath();

                drawCurvePath( 
                    ctx,
                    [ 100, 100 ],
                    [ 200, 300 ],
                    0.2,
                    percent
                );
    
                ctx.stroke();
    
                percent = ( percent + 1 ) % 100;
                
                requestAnimationFrame( animate );
                
            }
            
            animate();
            
            function drawCurvePath( ctx, start, end, curveness, percent ) {
                // ...
            }
        </script>
    </body>
</html>

得到的结果:

这样基本实现了我们的需求,但它有一个问题:

测试发现,进行一次lineTo的时间和一次quadraticCurveTo的时间差不多,但是quadraticCurveTo只需要一次就能画出曲线,而使用lineTo则需要数十次。

换言之,用这样的方式绘制曲线,和我们前面的实现方式相比性能下降了数十倍之多。在绘制一条曲线时可能感觉不到区别,但是如果需要同时绘制上千条曲线,性能就会受到很大的影响。

方法二

那有没有什么方法可以做到用quadraticCurveTo来实现绘制完整曲线的一部分呢?

我们再次回到这张图

s

在中间的某一时刻,例如t=0.25时,它是这样的:

我们注意到,曲线P0-B这一段似乎也是贝赛尔曲线,它的控制点变成了P0,Q0,B

现在问题就迎刃而解了,我们只需要每次计算出Q0,B,就能得到其中一小段贝赛尔曲线的控制点,然后就可以通过quadraticCurveTo来绘制它了。

代码如下:

/**
 * 绘制一条曲线路径
 * @param  {Object} ctx canvas渲染上下文
 * @param  {Array<number>} start 起点
 * @param  {Array<number>} end 终点
 * @param  {number} curveness 曲度(0-1)
 * @param  {number} percent 绘制百分比(0-100)
 */
function drawCurvePath( ctx, start, end, curveness, percent ) {

    var cp = [
         ( start[ 0 ] + end[ 0 ] ) / 2 - ( start[ 1 ] - end[ 1 ] ) * curveness,
         ( start[ 1 ] + end[ 1 ] ) / 2 - ( end[ 0 ] - start[ 0 ] ) * curveness
    ];
    
    var t = percent / 100;
    
    var p0 = start;
    var p1 = cp;
    var p2 = end;
    
    var v01 = [ p1[ 0 ] - p0[ 0 ], p1[ 1 ] - p0[ 1 ] ];     // 向量<p0, p1>
    var v12 = [ p2[ 0 ] - p1[ 0 ], p2[ 1 ] - p1[ 1 ] ];     // 向量<p1, p2>

    var q0 = [ p0[ 0 ] + v01[ 0 ] * t, p0[ 1 ] + v01[ 1 ] * t ];
    var q1 = [ p1[ 0 ] + v12[ 0 ] * t, p1[ 1 ] + v12[ 1 ] * t ];
    
    var v = [ q1[ 0 ] - q0[ 0 ], q1[ 1 ] - q0[ 1 ] ];       // 向量<q0, q1>

    var b = [ q0[ 0 ] + v[ 0 ] * t, q0[ 1 ] + v[ 1 ] * t ];
    
    ctx.moveTo( p0[ 0 ], p0[ 1 ] );

    ctx.quadraticCurveTo( 
        q0[ 0 ], q0[ 1 ],
        b[ 0 ], b[ 1 ]
    );

}

将前面写的页面替换成上面的代码,可以看到得到的结果是一样的:

绘制动画

现在已经解决了最关键的问题,我们可以绘制动画啦。
不过这一部分并不重要,我就不贴代码了。

完整代码可以看这里

160935917f7f0d3f

结束

我的博客地址: https://github.com/hujiulong/...

我会在这里分享我的学习成果和经验,特别是canvas/WebGL/svg这方面的技术。如果有对前端图形绘制感兴趣的同学可以关注一下我的博客,收藏点star,订阅点watch

最近才将博客搬到github,所以文章并不多,我会坚持写下去的!


hujiulong
2.5k 声望98 粉丝

js/vue/react/webGL