SVD

头像
Lycheeee
    阅读 1 分钟

    $$M_{m\times n}=U_{m\times k}\Sigma_{k\times k} V^T_{k\times n}$$

    SVD in Collaborative Filtering:
    can not accept empty value

    FunkSVD: fast and can accept empty value
    $$M_{m\times n}=P^T_{m\times k}Q_{k\times n}$$

    loss function:
    $$\sum (m_{ij}-q^T_{j}p_{i})^2$$
    by adding regularization
    $$\sum (m_{ij}-q^T_{j}p_{i})^2+\lambda (||p_i||_2^2+||q_j||_2^2) $$
    update formula
    $$p_i=p_i+\alpha((m_{ij}-q^T_{j}p_{i})q_j-\lambda p_i)$$
    $$q_j=p_i+\alpha((m_{ij}-q^T_{j}p_{i})p_i-\lambda q_j)$$

    SVD in PCA
    original formula
    $$M_{m\times n}=U_{m\times k}\Sigma_{k\times k} V^T_{k\times n}$$
    to reduce dimension from $n$ to $k$ (reduce column)
    $$M_{m\times n}V_{k\times n}=U_{m\times k}\Sigma_{k\times k} $$
    to reduce sample amount from $m$ to $k$ (reduce row)
    $$U^T_{m\times k}M_{m\times n}=\Sigma_{k\times k} V^T_{k\times n}$$

    Reference:
    In PCA: http://www.cnblogs.com/LeftNo...


    Lycheeee
    0 声望1 粉丝

    引用和评论

    0 条评论