了解ThreadPoolExecutor
先看一下线程池类的类图关系:
Executor接口
Executor作者描述的是Executor提供了一种解耦方式将任务的提交和任务以何种技术执行分离;
Executor接口只有一个方法:
void execute(Runnable command);
execute方法接收一个Runnable对象,方法的描述是在未来的某个时间执行command。不管是在一个新的线程中执行,还是在线程池中执行,甚至在调用者线程中立即执行。
ExecutorService接口
ExecutorService继承了Executor接口,ExecutorService可以被关闭,关闭以后不再接收新的任务。ExecutorService提供了两个不同的方法关闭ExecutorService。shutdown方法会等待之前还未执行的任务执行完毕再关闭,而shutdownNow则不会再启动新的任务,还会中断正在执行的任务。一旦关闭后,ExecutorService就不会有正在执行的任务,也不会有等待被执行的任务,更不会有新的任务被提交。ExecutorService关闭后应该处理好一些资源的回收。
ThreadPoolExecutor
线程池技术旨在解决两个不同的问题:
- 在处理大量异步任务时可以提高性能,因为减少了线程的销毁,新建,切换等消耗性能的操作。
- 线程池还有能力统一管理,调度,监控,调优线程等,还提供了一下基本的统计,比如已完成的任务数量。
重要的状态和状态判断的方法
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//高3位和低29位分别表示状态和线程数
private static final int COUNT_BITS = Integer.SIZE - 3;
//1左移29位减一得到低29位都是1,即线程的最大数量,大概5亿多
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;//111
private static final int SHUTDOWN = 0 << COUNT_BITS;//000
private static final int STOP = 1 << COUNT_BITS;//001
private static final int TIDYING = 2 << COUNT_BITS;//010
private static final int TERMINATED = 3 << COUNT_BITS;//011
// Packing and unpacking ctl
//获得状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
//获得线程数量
private static int workerCountOf(int c) { return c & CAPACITY; }
//通过状态和线程数量组装ctl
private static int ctlOf(int rs, int wc) { return rs | wc; }
/*
* Bit field accessors that don't require unpacking ctl.
* These depend on the bit layout and on workerCount being never negative.
*/
//c状态是否小于s状态
private static boolean runStateLessThan(int c, int s) {
return c < s;
}
//c状态是否大于等于s状态
private static boolean runStateAtLeast(int c, int s) {
return c >= s;
}
//线程池是否是运行状态
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
整个类最重要的一个状态标志ctl是一个AtomicInteger,它包含了两个字段的含义。workerCount线程数量,runState线程池的状态。
这一个字段是如何包含两个字段的含义的呢,Doug Lea大牛使用了一个int的32位bits的高三位保存了状态值,低29位保存了线程数量。
其中五个状态:
RUNNING:接收新的任务,处理队列中的任务;
SHUTDOWN:不接收新的任务,但处理队列中的任务;
STOP:不接收新的任务,不处理队列中的任务,中断正在执行的任务;
TIDYING:所有任务都终止,线程数为0, 线程过度到TIDYING时会调用terminated钩子方法;
TERMINATED:terminated执行完毕;
状态之间的转换:
RUNNING -> SHUTDOWN:调用shutdown方法;
(RUNNING or SHUTDOWN) -> STOP:调用shutdownNow方法;
SHUTDOWN -> TIDYING:当线程池和任务队列都为空;
STOP -> TIDYING:当线程池为空;
TIDYING -> TERMINATED:当terminated方法执行完毕;
Worker介绍
Worker类主要包含了线程运行任务时的终端控制状态,同时还有一些少量的信息记录。Worker适时的继承了AQS,让线程在任务执行之间获取锁和释放锁变得简单。这确保了中断是唤醒一个等待任务的线程,而不是中断一个正在运行的任务线程。
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state.
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
Worker继承了AQS,实现了Runnable接口;在构造函数中,初始化了它的第一次仍无,使用threadFactory创建一个新的线程;
Worker继承AQS,目的是想使用独占锁来表示线程是否正在执行任务,Worker的线程获取了独占锁就说明它在执行任务,不能被中断。从tryAcquire方法可以看出,它实现的是不可重入锁,因为是否获得锁在这里表示一个状态,如果可以重入的话,独占锁就失去了只表示一个状态的含义。在构造函数初始化时,Worker将state设置为-1,因为在tryAcquire中CAS操作compareAndSetState(0, 1),表示state在-1时不能被中断。在runWorker中将state设置为0.
ThreadPooleExecutor构造方法
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
说明一下各参数的含义:
corePoolSize:核心线程数量,即使线程是空闲的也保持在线程池中,除非allowCoreThreadTimeOut参数被设置;
maximumPoolSize:最大线程数量;
keepAliveTime:当线程数量超过核心线程数量时,超出的空闲线程等待新任务的最大时长;
unit:时间单位;
workQueue:存放将要被执行的任务的队列;
threadFactory:创建线程的线程工厂;
handler:当任务队列满且没有空闲的线程时处理任务的handler,线程池提供了四种策略:
- AbortPolicy:直接抛出异常,默认;
- CallerRunsPolicy:使用调用者的线程执行;
- DiscardOldestPolicy:抛弃队列最前的任务,执行当前任务;
- DiscardPolicy:直接丢弃任务;
这些参数对整个线程池运行非常重要;
execute方法
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
//获取ctl
int c = ctl.get();
//如果线程数小于核心线程数
if (workerCountOf(c) < corePoolSize) {
//添加线程并执行任务
if (addWorker(command, true))
return;
c = ctl.get();
}
//线程数大于核心线程数
//如果线程池running状态且添加任务到队列成功
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
//如果线程池不是运行状态,队列移除任务,使用拒绝策略处理任务
if (! isRunning(recheck) && remove(command))
reject(command);
//如果这时线程数为0,添加任务
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
//队列满,添加线程失败,使用拒绝策略处理任务
else if (!addWorker(command, false))
reject(command);
}
在线程池添
数量如果小于核心线程数,则添加新的线程并执行当前任务,否则判断如果队列是否未满,则添加当前任务到队列,否则判断线程数量如果小于最大线程数,则添加新的线程并执行,否则使用拒绝策略处理当前任务。
addWorker方法
addWorker方法主要是添加线程并执行任务:
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
//获取线程池运行状态
int rs = runStateOf(c);
// Check if queue empty only if necessary.
//如果运行状态大于等于SHUTDOWN,不再接受新的任务,返回false
//如果运行状态等于SHUTDOWN且firstTask不为空,继续执行下去,如果firstTask为空,queue为空,返回false,否则继续执行;只要SHUTDOWN状态下还有任务在,就需要往下执行,可能需要新建worker执行
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
//获得线程数量
int wc = workerCountOf(c);
//如果线程数量大于容量或者当core为true时wc大于等于核心线程数,当core为falsewc大于等于最大线程数量时,返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//CAS线程数加一,成功则中断循环
if (compareAndIncrementWorkerCount(c))
break retry;
//如果CAS失败,重新获取ctl,线程池运行状态没变的话继续loop
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
//新建一个worker
w = new Worker(firstTask);
//能得到worker的thread
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
//如果rs是RUNNING或者SHUTDOWN且firstTask为null
//因为SHUTDOWN时还需要执行queue中的任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
//往线程池中添加worker
workers.add(w);
int s = workers.size();
//记录线程池出现的最大线程数量
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
//启动worker
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
worker的run方法调用的是runWorker;
runWorker方法
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
//保存worker的第一个任务
Runnable task = w.firstTask;
//清空worker的第一个任务
w.firstTask = null;
//这里将worker的state设置为0,允许中断
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
//如果task为空,则从队列中获取任务
while (task != null || (task = getTask()) != null) {
//开始执行任务,不允许中断
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
//如果当前状态大于等于STOP要保持当前线程中断
//如果当前线程小于STOP即RUNNING或者SHUTDOWN,调用Thread.interrupted()清空中断标志,如果这时调用了shutdownNow状态为STOP,还是要保持中断状态
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
//执行任务前做的事
beforeExecute(wt, task);
Throwable thrown = null;
try {
//执行任务
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
//执行任务之后做的事
afterExecute(task, thrown);
}
} finally {
task = null;
//worker的完成任务数量加一,此时是线程安全的
w.completedTasks++;
//释放锁
w.unlock();
}
}
completedAbruptly = false;
} finally {
//线程退出
processWorkerExit(w, completedAbruptly);
}
}
每个task在调用runWorker后会一直循环执行任务,直到queue中没有任务了,循环结束,worker生命周期结束。
getTask
上面runWorker时调用了getTask去获取队列中的任务,下面我们看一下这个方法:
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
//如果rs大于等于SHUTDOWN,当RS大于等于STOP说明线程池已经不处理队列中的任务了,当rs为SHUTDOWN时,如果队列是空的,返回null
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
//线程数减一
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
//是否超时控制,allowCoreThreadTimeOut默认false,代表不允许核心线程超时,对于超出核心线程的线程需要控制超时
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
//当线程数大于最大线程数,或者需要超时控制且上次获取任务超时
//且线程数大于1或者队列为空,尝试将线程数减一并返回null
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
//失败重试
continue;
}
try {
//当需要超时控制时,在keepAliveTime时间内没有获取到任务的话返回null,否则调用take获取任务,此时线程时阻塞的
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
getTask方法在线程数量大于核心线程数时会判断在获取task时进行超时判断(poll),超时返回null这时getTask返回null,那当前worker的loop结束即run方法结束,线程生命周期结束。而核心线程则会调用take方法,当没有任务时会阻塞。
processWorkerExit
runTask方法最后会调用processWorkerExit方法进行一些cleanup工作。
private void processWorkerExit(Worker w, boolean completedAbruptly) {
//completedAbruptly为true时代表发生了异常,线程数减一
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//统计完成任务数
completedTaskCount += w.completedTasks;
//线程池移除当前worker
workers.remove(w);
} finally {
mainLock.unlock();
}
// 根据线程池状态进行判断是否结束线程池
tryTerminate();
int c = ctl.get();
//当线程池状态为RUNNING或者SHUTDOWN时
//如果发生异常,重新加入一个worker replacement
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
//当allowCoreThreadTimeOut为true,最少要一个worker
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
//当线程数大于等于最少需要的线程数,则不需要add新的worker
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}
tryTerminate方法
上面我们跳过了tryTerminate方法,该方法判断是否要结束线程池,这里看一下
final void tryTerminate() {
for (;;) {
int c = ctl.get();
//当线程池状态时RUNNING或者已经TIDYING或者已经TERMINATED或者SHUTDOWN且还有任务没有被执行,直接返回
if (isRunning(c) ||
runStateAtLeast(c, TIDYING) ||
(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
return;
// 如果线程数不为0,则中断一个空闲的工作线程
if (workerCountOf(c) != 0) { // Eligible to terminate
//workQueue.take()时如果queue一直为空的话,线程会一直阻塞
interruptIdleWorkers(ONLY_ONE);
return;
}
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//如果状态设置成功为TIDYING,调用勾子方法terminated,该方法留给了子类实现
if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
try {
terminated();
} finally {
//设置状态为TERMINATED
ctl.set(ctlOf(TERMINATED, 0));
termination.signalAll();
}
return;
}
} finally {
mainLock.unlock();
}
// else retry on failed CAS
}
}
interruptIdleWorkers
上面说为了当队列一直为空的时候,核心线程会一直阻塞,所以调用了interruptIdleWorkers,我们看一下执行了什么:
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
for (Worker w : workers) {
Thread t = w.thread;
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}
遍历线程池中所有的线程,若线程没有被中断tryLock成功,就中断该线程,LockSupport.park()能响应中断信号,阻塞的线程被中断唤醒。
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。