Android图像处理 - 高斯模糊的原理及实现

欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~

天天P图攻城狮 发布在云+社区
作者简介:damonxia(夏正冬),天天P图Android工程师

前言

高斯模糊是图像处理中几乎每个程序员都或多或少听过的名词,但是对其原理大家可能并不了解,只知道通过高斯模糊能实现图像毛玻璃效果。

本文首先介绍图像处理中最基本的概念:卷积;随后介绍高斯模糊的核心内容:高斯滤波器;接着,我们从头实现了一个Java版本的高斯模糊算法,以及实现RenderScript版本。由于我们自己实现的Java版本的高斯模糊算法的效率太低,因此最后介绍比较有名的高斯模糊的开源项目:Blurry以及BlurKit-Android。

BlurDemo是本文的配套Demo:

  • Demo1:Java版本的高斯模糊的简单实现。
  • Demo2:RenderScript的高斯模糊实现。
  • Demo3:BlurKit-Android的基本使用。
  • Demo4:Blurry的基本使用。

卷积

本文只讨论图像,而图像可以表示为二维矩阵,其中每个元素为ARGB像素值,因此这里讨论二维矩阵的卷积操作。卷积(Convolution)是图像处理中最基本的操作,就是一个二维矩阵A(MN)和一个二维矩阵B(mn)做若干操作,生成一个新的二维矩阵C(M*N),其中m和n远小于M和N,B称为卷积核(kernel),又称滤波器矩阵或模板。

这里举个卷积的例子,如图:

clipboard.png

上图中,最左边的是源矩阵(88),中间是卷积核(33,半径为1),最右边是通过对前面两个矩阵做卷积生成的结果矩阵。图中,如果我们要求出结果矩阵中第二行第二列的元素的值,则把卷积核的中心元素(值为0)和源矩阵的第二行第二列(值为6)对齐,然后求加权和,即图中的公式,最后得到-3。

我们再举一个例子:

clipboard.png

上图也展示了如何做卷积的过程,比如要求出结果矩阵中第一行第一列的值,则把卷积核的中心对准源矩阵的第一行第一列,发现部分区域超出源矩阵的范围了(图中红色部分),解决方法有很多,这里的方案是:用边界值填充。接着做加权和,结果为-5。接着用同样的方法依次计算结果矩阵的每个元素即可。

通常来说卷积核需要满足:

  • 宽和高都为奇数,这样才会有半径和中心的概念。
  • 元素总和为1。

滤波器

均值滤波器

均值滤波器(Mean Filter)是最简单的一种滤波器,它是最粗糙的一种模糊图像的方法,高斯滤波是均值滤波的高级版本。实际上不同的滤波器就是通过改变卷积核(滤波器),从而改变最后的结果矩阵,中间步骤都一样,都是求加权和。均值滤波器的卷积核通常是mm的矩阵,其中每个元素为1/(m^2),可以看出卷积核的元素总和为1。比如33的均值滤波器,卷积核的每个元素就是1/9。

高斯滤波器

高斯滤波器是均值滤波器的高级版本,唯一的区别在于,均值滤波器的卷积核的每个元素都相同,而高斯滤波器的卷积核的元素服从高斯分布。

高斯滤波器是基于二维的高斯分布函数,因此首先介绍二维高斯分布函数。二维高斯分布函数和图如下:

clipboard.png

其中x和y表示卷积核中某个元素横坐标和纵坐标距离中心点的距离。sigma控制曲线的平缓程度,值越大,越平缓,最高点越低。我们可以轻易看出当x=0且y=0时值最大,即卷积核的中心点权重最大。

比如卷积核中一个元素距离中心点,横向距离2,纵向距离1,那么x=2,y=1,就能求出该元素的值。当然为了保证卷积核元素总和为1,最后每个元素都需要除以卷积核中所有元素之和。

怎么确定卷积核的大小呢?确定sigma之后,虽然不管距离中心点多远,该元素的高斯分布函数值总为非负数,但是根据经验,卷积核的半径定为3sigma,因此宽高为6sigma+1。

如果高斯滤波器的卷积核是二维的(mn),则算法复杂度为O(mnMN),复杂度较高,因此接下来我们对算法复杂度进行优化。

一维的高斯分布函数和图如下:

clipboard.png

实际上,二维高斯分布函数可以分解为两个一维高斯分布函数相乘,如下:

clipboard.png

因此原本的源矩阵和二维卷积核做卷积等价于源矩阵先与1m的一维卷积核做卷积,再与m1的一维卷积核做卷积。一维卷积核的半径仍定为3sigma。此时算法复杂度变为O(2mMN)。

高斯模糊的实现

Java版本

这里实现了简单版本的高斯模糊,通过使用横向和纵向的一维高斯滤波器分别对源矩阵卷积,通过设置sigma的大小能控制图片的模糊程度,值越大越模糊。但是算法速度仍比较慢,建议直接使用RenderScript版本或直接使用成熟的开源项目。

由于代码过长,不能截图,因此直接给出Gist地址:
https://gist.github.com/xiazd...

效果如下:

clipboard.png

RenderScript版本

RenderScript是Android提出的一个计算密集型任务的高性能框架,能并行的处理任务,他可以充分利用多核CPU和GPU,你不需要管怎么调度你的任务,只需要管任务具体做什么。这里不深入介绍RenderScript,因为RenderScript已经提供了一个实现高斯模糊的类:ScriptIntrinsicBlur。

实现起来非常简单:

clipboard.png

开源项目

关于Android图像模糊的开源项目有很多,比如Blurry是专门针对Bitmap或View做模糊,可以设置模糊的基底色,而且还能对模糊操作异步化;BlurKit-Android也能对Bitmap做高斯模糊(内部通过RenderScript实现),但最吸引人的是实现了毛玻璃的遮罩,效果如下:

BlurKit-Android支持的最低版本是Android 4.1(API 16),因此如果应用需要支持的最低版本是4.0,则不能使用该库,Blurry支持的最低版本是3.0。

BlurKit-Android

配置过程如下:

  • 在build.gradle中设置:compile 'com.wonderkiln:blurkit:1.0.0',并在defaultConfig中设置renderscriptTargetApi 24和renderscriptSupportModeEnabled true。
  • 在Application的onCreate()最开始处加入BlurKit.init(this);。

配置完成后,通过调用BlurKit.getInstance().blur(Bitmap src, int radius);实现高斯模糊,并会把高斯模糊的结果图写入src,其中0<radius<=25。

该库还提供了fastBlur()实现速度更快的高斯模糊,和blur()的区别在于,fastBlur()在高斯模糊之前对图片采样,使得图片大小缩小好几倍,从而加快高斯模糊的速度。这种加快速度的方法是合理的,因为高斯模糊并不需要原图像很精确的信息。

BlurKit-Android最吸引人的是提供高斯模糊的遮罩(BlurLayout),随着遮罩下面的内容的变化,高斯模糊效果也会随之改变。使用如下:

clipboard.png

该Layout能够实现实时的对该Layout下面的内容做高斯模糊。

Blurry

配置方法:在build.gradle中添加compile 'jp.wasabeef:blurry:2.1.1'。

使用方法如下:

clipboard.png

总的来说,这两个库都使用起来非常方便。

相关阅读

Android图像处理系列 - 高斯模糊的几种优化方法

iOS图像处理系列 - 双重曝光技术的GPUImage实现

iOS图像处理系列 - GPUImage源码解读(二)

此文已由作者授权云加社区发布,转载请注明文章出处


腾讯云技术社区
最专业的云解读社区
21.7k 声望
17.3k 粉丝
0 条评论
推荐阅读
我用低代码结合ChatGPT开发,每天多出1小时摸鱼
GPT 出现之后,很多人推测大量的软件都会因为其出现而重写。本文主要是低代码平台与 ChatGPT 结合的一些思考以及实践。期望与各位读者一起搭上 AI 这列快车,为开发提提速~

腾讯云开发者

算法可视化:一文弄懂 10 大排序算法
在本文中,我们将通过动图可视化加文字的形式,循序渐进全面介绍不同类型的算法及其用途(包括原理、优缺点及使用场景)并提供 Python 和 JavaScript 两种语言的示例代码。除此之外,每个算法都会附有一些技术说...

破晓L7阅读 906

封面图
00 后清华学霸用 AI 打败大气层「魔法攻击」,还原宇宙真面貌
内容一览:从诞生的那一刻起,人类对宇宙的探索就从未停止。如今,这门古老的科学再次借助 AI 获得加速度。本文将展示 AI 与天文学的结合擦出了怎样的火花。关键词:AI 天文图像 弱引力透镜

超神经HyperAI阅读 86.1k

封面图
网易云音乐开源全链路埋点方案-曙光埋点(dawn)
网易云音乐开源了曙光埋点 dawn,一个跨多端的全链路埋点解决方案,旨在构造一个完美的数据理想国。曙光埋点创造性的提出了埋点虚拟树(VTree),并在此基础上实现了诸多能力,解决大前端侧埋点困难、精度差、不...

云音乐技术团队3阅读 2.4k

封面图
一张自拍即可实现变老变年轻,带你感受时光流逝之美
PaddleGAN是飞浆在图像生成和处理领域的一个代表性项目,通过深度学习的技术和飞浆的支持,PaddleGAN可以实现多种惊人的图像处理效果,例如图像转换、人脸编辑、动态效果生成等等。

tiny极客3阅读 2.3k评论 1

封面图
【TVM 学习资料】快速入门:编译深度学习模型
这个例子展示了如何用 Relay Python 前端构建神经网络,并为装有 TVM 的 NVIDIA GPU 生成 runtime 库。注意,构建 TVM 需要启用 CUDA 和 LLVM。

超神经HyperAI阅读 34.3k

一个令人惊艳的ChatGPT项目,开源了!
最近在GitHub上发现了一个爆火的开源项目。好家伙,凑近一看,居然还是由微软开源,并且和最近炙手可热的ChatGPT息息相关。项目的名字叫做:Visual ChatGPT。[链接]这个项目最早是3月上旬微软开源的,项目宣布开...

CodeSheep2阅读 1.9k

封面图
21.7k 声望
17.3k 粉丝
宣传栏