1

常见排序算法及其实现

说明

如果有幸能看到

  • 1、本文中的代码是参考《Java编程思想》、某培训机构。
  • 2、文中的代码放Github了,有兴趣的可以看看,点个star鼓励下我。
  • 3、代码在Sublime中敲的,坑爹的GBK,注释了很多中文,一转码不能用了!!!
  • 4、重点在思想,而不是实现 。再次推荐《Java编程思想》
  • 5、如有拼写错误,还请谅解。本文只为自己复习使用,最后放了两个收藏非常有水准的文章链接。

数据结构之排序

排序:假设含有n个记录的序列{R1,R2,R3..,Rn},其中的关键字序列为{K1,K2,K3...,Kn}。将这些记录重新排序为{Ri1,Ri2,Ri3,Rin} ,使得相应的关键字满足Ki1<=Ki2<=..<=Kim,这样的一种操作被称为排序。

通常来说,排序的目的是快速查找

衡量排序算法的优势:

  • 1、时间复杂度:分析关键字的比较次数和记录的移动次数。
  • 2、空间复杂度:分析排序算法中需要多少辅助内存。
  • 3、若两个记录A和B的关键字相等,但排序后A、B、的先后次序保持不变,则称为这种排序算法是稳定的。

排序算法分类:内部排序和外部排序

  • 内部排序:整个排序过程不需要借助于外部存储器(如此攀等),整个排序在内存中完成。
  • 外部排序:参与排序的数据非常多,数据量非常大,计算机无法把整个排序过程放在内存中完成,必须借助于外部存储器,外部排序最常见的是多路归并排序,可以认为外部排序由多次内部所组成。

常用的内部排序

  • 选择排序

    • 直接选择排序
    • 堆排序
  • 交换排序

    • 冒泡排序
    • 快速排序
  • 插入排序

    • 直接插入、折半插入
  • 归并排序
  • 桶式排序
  • 基数排序

选择排序

基本原理:
将待排序的元素分为已排序和未排序,依次将为排序的元素中最小的元素放入已排序的组中,

直接排序简单直观,但性能略差:堆排序是一种较为搞笑的选择排序。但实现起来略为复杂。

代码实现:

import java.util.Arrays.*;
//选择排序,
public class SelectSort{
    public static void selectSort(int[] data) {

        int arrayLength = data.length;
        for (int i = 0; i < arrayLength - 1 ; i++ ) {
            for (int j= i +1; j < arrayLength; j++ ) {
                if (data[i] > data[j]) {
                    swap(data,i,j);
                }
            }
        }
        System.out.println("排序后 " + java.util.Arrays.toString(data));


    }

  //第一种通过临时变量来完成交换
  //注意这里可以用另外一中一种方式
    static void swap(int[] data,int i,int j) {
            int tmp = data[i];
            data[i] = data[j];
            data[j] = tmp;
        }


    public static void main(String[] args) {
        int[] data = {3,4,2,6,8,1,9};
        selectSort(data);
    }
}

改进版的选择排序:

//选择排序算法
//选择排序算法
//1、主要思想就是每次假设一个最小的值
public class SelectSort1 {
    public static void selectSort1(int[] data) {
        int arraylength = data.length;
        for (int i = 0; i < arraylength - 1; i++ ) {
            int minIndex = i;      //每次假设一个最小值下标
            for (int j = i + 1; j < arraylength ; j++ ) {
                if (data[minIndex] > data[j]) {
                minIndex = j;
                }
            }
            //判断需要交换的下标是否为自己
            if (minIndex != i) {
                 data[minIndex] = data[minIndex] + data[i];
                 date[i] = date[minIndex] - data[i];
                 data[minIndex] = data[minIndex] - data[i];
            }

        }
        //输出结果
        for (int d :data ) {
            System.out.println("排序之后:" + d);
        }
    }

    public static void main(String[] args) {
        int[] data = {3,4,2,6,8,1,9};
        selectSort1(data);
    }
}

直接选择排序效率分析

算法的时间效率:无论初始化状态如何,在第i趟排序中选择最小的元素,需要n-1次比较

算法的空间效率:空间效率较高,只需要一个附加程序单元用于交换,其空间效率为O(1)

算法的稳定性:不稳定

堆排序

资料和代码来自这家,有一种感觉,年代越远,越重视基础。现在的培训呢?

堆排序就是把最大堆堆顶的最大数取出,将剩余的堆继续调整为最大堆,再次将堆顶的最大数取出,这个过程持续到剩余数只有一个时结束

  • 最大堆调整(Max-Heapify):将堆的末端子节点作调整,使得子节点永远小于父节点
  • 创建最大堆(Build-Max-Heap):将堆所有数据重新排序,使其成为最大堆
  • 堆排序(Heap-Sort):移除位在第一个数据的根节点,并做最大堆调整的递归运算

这个有点难啊,下一个。回来再来看。

冒泡排序

相邻两元素进行比较,如有需要则进行交换,每完成一次循环就将最大元素排在前面(从小到大排序)下一次循环是将其他的数进行类似的比较。

代码实现:

//冒泡排序
public class BubbleSort {
    static void sort(int[] data) {
        int len = data.length;
        for (int i = 0; i < len - 1; i++ ) {
            for (int j = 0 ; j < len - 1 - i; j++ ) {
                if (data[j] > data[j + 1]) {
                    swap(data,j,j+1);
                }
            }
        }

    }
    static void swap(int[] data,int i,int j) {
        int tmp = data[i];
        data[i] = data[j];
        data[j] = tmp;
    }

    public static void main(String[] args) {
        int[] data = {4,2,6,8,2,1,0};
        sort(data);
        for(int d : data) {
            System.out.print("->" + d);
        }
    }
}

冒泡排序效率分析:

  • 算法的时间效率:从冒泡排序的算法可以看出,若待排序的元素为正序,则只需进行一趟排序,比较次数为n-1次,移动元素次数为0;若待排序的元素为逆序,则需要进行n-1趟排序.
  • 算法的空间效率:空间效率很高,只需要一个附加程序单元用于交换,其空间效率为O(1)
  • 算法的稳定性:稳定

快速排序

快速排序(Quick Sorting)基本思想是:任取待排序序列中的某个元素为界点,通过一次划分,将待排序元素分为左右两个子序列,左子序列元素的排列序列均小于界点元素的排序码,右子序列的排序码则大于或等于界点的排序码,然后分别对两个字序列继续进行划分,直至每一个序列只有一个元素为止。

一定要认真啊,认真啊,认真啊!!!
代码实现:

//快速排序
public class QuickSort {
    private static void swap(int[] data,int i,int j) {
        int tmp = data[i];
        data[i] = data[j];
        data[j] = tmp;
    }

    private static void subSort(int[] data,int start,int end) {
        if (start < end) {
         int base = data[end];

         int i = start;
         int j = end + 1;

         while(true) {
             while(i < end && data[++i] <= base) ;
             while(j > start && data[--j] >= base);
             if (i > j) {
                 swap(data,i,j);
             }else {
                 break;
            }
        }

            swap(data, start, j);
            subSort(data, start, j - 1);
            subSort(data, j + 1, end);
        }

    }
    public static void quickSort(int[] data) {
        subSort(data,0,data.length - 1);
    }

    public static void main(String[] args) {
        int[] data = {9,5,6,88};
        quickSort(data);
        System.out.print(java.util.Arrays.toString(data));
    }
}

插入排序

基本思想:每次将一个待排序的元素,按其关键字的大小插入到前面已经排好序的子序的合适位置,直到全部记录插入完成。

* 插入算法.
* 1,从后向前找到合适的位置插入
* 基本思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排好的子序列的合适位置
* 直到全部插入为止
*/
public class InsertSort {
   public static void main(String[] args) {
       //待排序的数列
       int[] nums = {43, 23, 64, 24, 34, 78, 32};
       //控制比较的轮数
       for (int i = 1; i < nums.length; i++) {
           //记录操作数
           int temp = nums[i];
           int j = 0;
           for (j = i - 1; j >= 0; j--) {
               //后一个和前一个比较,如果前面的大,则把前面的赋值到后面。
               if (nums[j] > temp) {
                   nums[j+1] = nums[j];
               } else {
                   break;
               }
           }
           if (nums[j + 1] != temp) {
               nums[j + 1] = temp;
           }
       }
       //输出结果
       for(int n : nums) {
           System.out.println(n);
       }
   }
}

直接插入排序:

直接插入排序 的基本思想:把n个待排序的元素堪称为一个有序表和无序表,开始时有序表中只包含一个元素,无序表中有n-1个元素,排序过程中每次从无序表中取出第一个元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表。

代码实现:

//直接插入排序
public class InsertSort {
    public static void insertSort(int[] data) {
        int arrayLength = data.length;
        for (int i = 1; i < arrayLength; i++) {
            int tmp = data[i];

            if (data[i] < data[i -1]) {
                int j = i - 1;
                for (;j >=0 && data[j] > tmp; j-- ) {
                    data[j + 1] = data[j];
                }
                data[j + 1] = tmp;
            }

        }
    }
    public static void main(String[] args) {
        int[] data = {5,2,6,9};
        insertSort(data);
        for (int d :data ) {
            System.out.print(" " + d);

        }
    }
}

折半插入排序

  • 折半插入排序是对直接插入排序的简单改进。
  • 此处介绍的折半插入,其实就是通过不断地折半来快速确定第i个元素的插入位置,这实际上是一种查找算法:折半查找。Java的Arrays类里的binarySearch()方法,就是折半查找的实现,用于从指定数组中查找指定元素,前提是该数组已经处于有序状态。
  • 与直接插入排序的效果相同,只是更快了一些,因为折半插入排序可以更快地确定第i个元素的插入位置

代码实现:

//折半插入排序
public class BinaryInsertSort{
    public static void binaryInsertSort(int[] data) {
        int len = data.length;
        for (int i = 1; i < len; i++) {
            int tmp = data[i];
            int low = 0;
            int high = i - 1;
            while(low <= high) {
                int mid = (low + high) / 2;
                if (tmp > data[mid]) {
                    low = mid + 1;
                }
                else {
                    high = mid -1;
                }

            }for (int j = i;j > low ; j-- ) {
                data[j] = data[j - 1 ];
            }
            data[low] = tmp;
        }
    }

    public static void main(String[] args) {
        int[] data = {5,2,7,3,9};
        binaryInsertSort(data);
        for (int d : data) {
            System.out.print(" " + d);
        }
    }
}

/**
 * Created by guo on 2018/2/2.
 * 二分查找法(折半查找):前提是在已经排好序的数组中,通过将待查找的元素
 * 与中间索引值对应的元素进行比较,若大于中间索引值对应的元素,去右半边查找,
 * 否则,去左边查找。依次类推。直到找到位置;找不到返回一个负数
 */
public class BinarySearchSort {
    public static void main(String[] args) {
        //必须保证数列是有序的
        int[] nums = {12, 32, 55, 67, 87, 98};
        int i = binarySearch(nums, 87);
        System.out.println("查找数的下标为:" + i);   //输出下标为4
    }

    /**
     * 二分查找算法
     *
     * @param nums
     * @param key
     * @return
     */
    public static int binarySearch(int[] nums, int key) {
        int start = 0;             //开始下标
        int end = nums.length - 1; //结束下标
        while (start <= end) {     //开始位置不能穿过结束位置 --start-->|<--end--
            int middle = (start + end) / 2;
            // 如果查找的key比中间的大,则去掉左边的值
            if (key > nums[middle]) {
                start = middle + 1;
             //如果查找的key比中间的小,则去掉右边的。
            } else if (key < nums[middle]) {
                end = middle - 1;             //结束位置需要向前移一位。
            } else {
                return middle;
            }
        }
        //找不到则返回-1
        return -1;
    }
}

先到这里吧,后续还得多敲几遍,需要学习的太多了,gogogo。

给大家放两个链接,GitHubGitHub。里面收集的文章非常有水准,点进去不会失望的。


guoxiaoxu
440 声望405 粉丝

越努力,越幸运