建立一个logstic分类器来识别猫
0.用到的数学公式
$$z^{(i)} = w^T x^{(i)} + b $$
$x^{(i)}$是第i个训练样本
$$\hat{y}^{(i)} = a^{(i)} = sigmoid(z^{(i)})$$
$$ \mathcal{L}(a^{(i)}, y^{(i)}) = - y^{(i)} \log(a^{(i)}) - (1-y^{(i)} ) \log(1-a^{(i)})$$
$$ J = \frac{1}{m} \sum_{i=1}^m \mathcal{L}(a^{(i)}, y^{(i)})$$
$J$ 是损失函数,表示预测值与期望输出值的差值
1.导入包
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset #读入数据
%matplotlib inline
2.定义σ激活函数
$$sigmoid( w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$$
def sigmoid(z): # z是任何大小的标量或者numpy数组
s = 1 / (1 + np.exp(-z))
return s # s -- sigmoid(z)
3.初始化参数
def initialize_with_zeros(dim): # dim - 我们想要的w矢量的大小(或者这种情况下的参数数量)
w = np.zeros((dim, 1))
b = 0
assert(w.shape == (dim, 1))
assert(isinstance(b, float) or isinstance(b, int))
return w, b # w--初始化形状为(dim, 1)的零矩阵 b - 初始化的标量(对应于偏差)
4.向前传播和向后传播
$$A = \sigma(w^T X + b) = (a^{(0)}, a^{(1)}, ..., a^{(m-1)}, a^{(m)})$$
$$J = -\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log(a^{(i)})+(1-y^{(i)})\log(1-a^{(i)})$$
$$ \frac{\partial J}{\partial w} = \frac{1}{m}X(A-Y)^T$$
$$ \frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^m (a^{(i)}-y^{(i)})$$
def propagate(w, b, X, Y):
# w -- weights, 一个形状为(num_px * num_px * 3, 1)的numpy数组
# b -- bias, 一个标量
# X -- 形状为(num_px * num_px * 3, number of examples)的数据集
# Y -- 形状为(1, number of examples)的判断标签向量 (图片无猫为0, 有猫为1)
m = X.shape[1]#数据集列数
A = sigmoid(np.dot(w.T,X) + b)
cost = (-1/m)*np.sum(Y * np.log(A) + (1 - Y)*np.log(1-A))
dw = 1/m * np.dot(X, (A - Y).T)
db = 1/m * np.sum(A-Y)
assert(dw.shape == w.shape)
assert(db.dtype == float)
cost = np.squeeze(cost)
assert(cost.shape == ())
grads = {"dw":dw, "db": db}
#cost -- 逻辑回归的负对数似然成本
#dw -- 相对于w的损失梯度, 形状和w一样
#db -- 相对于b的损失梯度, 形状和b一样
return grads, cost
5.优化
$$ \theta = \theta - \alpha \text{ } d\theta$$
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
# w -- weights, 一个形状为(num_px * num_px * 3, 1)的numpy数组
# b -- bias, 一个标量
# X -- 形状为(num_px * num_px * 3, number of examples)的数据集
# Y -- 形状为(1, number of examples)的判断标签向量 (图片无猫为0, 有猫为1)
#num_iterations -- 优化循环的迭代次数
#learning_rate -- 梯度下降更新规则的学习率
#print_cost -- 是否打印每100步的损失
costs = []
for i in range(num_iterations):
grads, cost = propagate(w, b,X, Y)
dw = grads["dw"]
db = grads["db"]
w = w - learning_rate * dw
b = b - learning_rate * db
if i % 100 == 0:
costs.append(cost)
if print_cost and i % 100 == 0:
print("Cost after iteration %i: %f" %(i, cost))
params = {"w":w, "b":b}
grads = {"dw": dw, "db":db}
#params -- 包含w和b的字典
#grads -- 包含权重和偏差相对于成本函数的梯度的字典
#costs -- 在优化过程中计算的所有成本列表,这将用于绘制学习曲线。
return params, grads, costs
6.预测
$$\hat{Y} = A = \sigma(w^T X + b)$$
def predict(w, b, X):
# w -- weights, 一个形状为(num_px * num_px * 3, 1)的numpy数组
# b -- bias, 一个标量
# X -- 形状为(num_px * num_px * 3, number of examples)的数据集
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
A = sigmoid(np.dot(w.T, X) + b)
for i in range(A.shape[1]):
if A[0, i] <= 0.5:
Y_prediction[0, i] = 0
else:
Y_prediction[0, i] = 1
assert(Y_prediction.shape == (1, m))
# Y_prediction -- 包含所有预测(0/1)的numpy数组(向量),用于X中的示例
return Y_prediction
7.目标模型
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
'''
通过调用之前实现的函数来构建逻辑回归模型
变量:
X_train -- 一个形状为(num_px * num_px * 3,m_train)的numpy数组表示的训练集
Y_train -- 形状为(1,m_train)的numpy数组的训练标签(矢量)
X_test -- 一个(num_px * num_px * 3,m_test)的numpy数组形式表示测试集
Y_test -- 由形状(1,m_test)的numpy数组(矢量)表示的测试标签
num_iterations -- 代表迭代次数的超参数来优化参数
learning_rate -- 表示在optimize()的更新规则中使用的学习速率的超参数
print_cost -- 设置为true则以每100次迭代打印成本
返回值:
d -- 包含关于模型的信息的字典。
'''
# 用零初始化参数
w, b = initialize_with_zeros(X_train.shape[0])
# 梯度下降
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
# 从字典“参数”中检索参数w和b
w = parameters["w"]
b = parameters["b"]
# 预测测试/训练集的例子
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
# 打印训练/测试的结果
print("训练准确性: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("测试准确性: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
将数据带入
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
绘制学习曲线(含成本)
costs = np.squeeze(d['costs'])
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(d["learning_rate"]))
plt.show()
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。