5
清明假期期间,闲的无聊,就做了一个小游戏玩玩,目前游戏逻辑上暂未发现bug,只不过样子稍微丑了一些-.-
项目地址:https://github.com/Jiasm/tetris
在线Demo:http://blog.jiasm.org/tetris/... (修改URL参数可以调整难度)

整体分成三块进行开发,使用面向对象式编程进行开发(其实我更喜欢用函数式编程,但苦于游戏的一些状态用对象来存储会更直观一些):

  1. Game

    1. 负责生成新的方块
    2. 负责方块移动的处理
    3. 方块触底的判断
    4. 移除满足清除条件的行
  2. Render

    1. 负责用Game的数据来渲染整个游戏界面
  3. Controller

    1. 负责接受用户输入(上下左右各种操作)并处理
    2. 向用户反馈当前游戏的状态

这样分层带来了一个好处,我们游戏的逻辑Game模块并不依赖于当前程序运行的环境,而Render可以是CanvasDOM,甚至是控制台输出。我们要移植到其他平台,只需要修改Render即可。

项目结构

忽略了一些与游戏没有直接关系的结构
.
├── model
│   ├── Brick.js
│   ├── Game.js
│   └── index.js
├── utils
│   ├── buildEnum.js
│   ├── deepCopy.js
│   ├── getShape.js
│   ├── index.js
│   ├── lineIndex.js
│   ├── matrixString.js
│   └── rotateArray.js
├── enum
│   ├── gameType.js
│   ├── index.js
│   └── pointType.js
├── data
│   └── shapes.js
├── controller
│   └── index.js
└── view
    ├── RenderCanvas.js
    └── index.js
各目录下的index.js是为了方便同时引用多个文件,大致长这个样子:
export { default as model1 } from './model1'
export { default as model2 } from './model2'

然后我们就可以在用到的地方写:

import { model1, model2 } from './XXX'

model

这里是游戏的核心逻辑所在位置。

像俄罗斯方块这种的矩阵类游戏,存储数据最合适的方法就是一个二维数组了。
为了更直观一些,我们选择了游戏的高度作为第一层数组的长度:

matrix = new Array(height).fill(new Array(width))

// width: 2 height: 4
[
  [ 1, 1],
  [ 1, 1],
  [ 1, 1],
  [ 1, 1]
]

而且这样选择在一些逻辑处理上也会更方便一些:

  1. 下移操作时,我们只需改变元素的第一层下标
  2. 判断是否触底时,我们只需将当前下标 + 1 判断是否有元素即可

我们对数组中的元素进行了定义:

  • 0: 空,表示当前坐标为空白
  • 1: 新的方块,表示当前活动的方块
  • 2: 老的方块,已经触底固定的方块

接下来,我们就遇到了一个问题,如何处理方块的放置。
我们知道,游戏会不停的向棋盘中加载新的方块。
如果我们每次处理下移的时候,都将当前二维数组中对应的方块元素移除,然后在塞入到新的位置,未免太过繁琐了。

所以我们在初始化数据时,初始化两个二维数组。
当我们加载一个新的方块后,将方块对应的元素塞入其中的一个二维数组。
然后等到我们有进行其他的操作时,比如左右移动,向下之类的。
我们直接使用第二个二维数组覆盖到当前的数组中去,然后再将更改下标后的方块塞入数组。
这样在数据上,我们就完成了方块的移动。

class Game {
  init () {
    // 初始化两个矩阵
    this.matrix = [[], []]
    this.oldMatrix = [[], []]
  }
  move () {
    // 重置当前矩阵数据
    this.matrix = deepCopy(this.oldMatrix) // 解除引用
    // 加载方块数据
    this.matrix[y][x1] = 1
    this.matrix[y][x2] = 1
  }
}

左右移动的处理

左右的移动不能像向下移动一样,单纯的下标+1。
我们需要判断当前的操作是否有效。
比如右侧如果遇到了障碍物或者到达边缘,我们肯定是不能够再进行移动的。

// blend 为活动砖块的形状描述 [[1, 1, 1], [0, 1, 0]] 类似这样的结构
if (
  x >= width - brickWidth ||
  blend.some((row, rowIndex) => {
    let _pos = oldMatrix[y + rowIndex]
    return row && row[brickWidth - 1] && _pos && _pos[x + brickWidth]
  })
)
  return // 右侧有障碍物,无法移动

使用类似这样的逻辑进行判断,保证当前方块向右移动后不会覆盖之前的方块。

快速向下的处理

我看有些游戏实现的,貌似下降触发只是加速下降而已(这种情况只需要改变定时下降的速度即可)-.-这里的实现是,直接触底

所以就会遇到一个问题,当前砖块最多可以下降到什么位置?

[1, 1, 1]
[0, 0, 0]
[0, 2, 0]
[2, 2, 2]

就像这样的一个数据,0|2这两列都可以向下移动两列,但是这样就会导致中间一列的重叠。
我们一定要取出下降幅度最小的那个值。
所以我们就要算出最后一行1的下标以及第一行2的下标,将这两个下标进行相减,最小值即为我们当前方块可下降的距离。

旋转方块的处理

旋转方块应该是游戏中比较复杂的一块逻辑了。
绝不是仅仅简单的将方块的二维数组由行改为列,在有些时候,我们还需要判断方块是否可以进行旋转。
.
就像这样的,中间的长条是不能够进行旋转的。
所以我们要先拿到旋转后的数据,来与当前游戏中的数据进行比较,检验是否会出现重叠的情况,如果出现了,则表示不能够进行旋转。

触底检测

每完成一个移动的动作后,我们都需要进行方块的触底检测。
也就是判断当前方块下,是否已经有元素占位,如果有的话,则表示已经触底了,当前元素就会被固定进矩阵数组中。
同样的,我们在判断时,不需要将方块所有的下标都检查一遍,只需要检查最底部一层的有效元素即可。

[1, 1],
[0, 1],
[0, 1],

像这样的一个方块,我们仅需要判断第一列的第二行&第二列的第四行是否有元素即可完成检查。

移除行

当某一行被填满元素后,我们就要将它进行移除。
在触底检测触发后,如果有方块被固定进数组,此时我们再进行移除行的操作。
因为如果没有新的方块进入,移除行的这步操作就不是必要的。
同时,得分的计数也应该在此处进行,我们将移除的行数进行记录,获取到的行数便是得分了。

至此,所有有关矩阵数据的操作就结束了。
Game对象只去维护这么一个二维数组,对象本身不包含任何游戏相关的操作,只会在被调用时进行对应的处理。
然后生成新的二维数组。

utils

这里放置了一些比较通用的方法,用来提高开发效率使用。
比如获取方块最底部一层的下标之类的工具函数。

enum

存放了一些状态的枚举,游戏状态以及方块所对应的状态,类似这样的数据:

{
  empty: 0,
  newBrick: 1,
  oldBrick: 2
}

data

存放了游戏中各种使用到的方块信息。
正方形,梯形之类的方块在二维数组中所对应的描述。

controller

就是上边我们所说的,用来与用户交互的模块,由Controller来获取游戏相关的信息,并调用Render进行渲染。
监听键盘事件,在页面中渲染一些控制按钮。
以及定时触发Game的下落方法。

view

游戏界面的渲染部分,目前选定的是使用canvas,所以只写了RenderCanvas
在渲染的这部分,稍微做了一些优化处理,将活动中的方块与固定的方块进行分开渲染。
这样在用户操作上下左右移动时,并不会重新渲染整个游戏布局,而只是渲染活动方块的canvas

小记

两天多的时间进行开发,其中有半天时间在修复FlowType的Warning提示。。。
搞完了以后,觉得实现这个的主要难点就在于方块旋转&触底的判断这里了。
能够清晰的管理游戏对应的二维数组,这个游戏开发起来就会很顺畅。

界面还有待优化。


Jarvis
5.1k 声望4.7k 粉丝

GitHub: [链接]