Problem
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
Solve it without division and in O(n).
Example
For example, given [1,2,3,4], return [24,12,8,6].
Follow up:
Could you solve it with constant space complexity? (Note: The output array does not count as extra space for the purpose of space complexity analysis.)
Solution
class Solution {
public int[] productExceptSelf(int[] nums) {
long product = 1;
int[] res = new int[nums.length];
for (int i = 0; i < nums.length; i++) {
//so there are two special situations: one number or more than one number equals 0
if (nums[i] != 0) product *= (long) nums[i];
else {
//here we consider if one number is 0
//all other products should be 0
Arrays.fill(res, 0);
//*maybe* except for this one, lets create a method for it
res[i] = getProduct(nums, i);
//stop here and return, since we already got the correct result array
//*and* no need to consider the other situation, it would be all 0's
return res;
}
}
for (int i = 0; i < res.length; i++) {
res[i] = (int) (product / nums[i]);
}
return res;
}
public int getProduct(int[] nums, int k) {
int product = 1;
for (int i = 0; i < nums.length; i++) {
if (i != k) product *= nums[i];
}
return product;
}
}
Update 2018-9
//Solution without division
class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] res = new int[n];
int[] dp = new int[n];
int[] pd = new int[n];
dp[0] = nums[0];
for (int i = 1; i < n; i++) {
dp[i] = dp[i-1] * nums[i];
}
pd[n-1] = nums[n-1];
for (int i = n-2; i > 0; i--) {
pd[i] = pd[i+1] * nums[i];
}
res[0] = pd[1];
res[n-1] = dp[n-2];
for (int i = 1; i < n-1; i++) {
res[i] = dp[i-1] * pd[i+1];
}
return res;
}
}
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。